Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 9(11): 220466, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36465670

ABSTRACT

In this study, red mud (RM) was used as a support for LaFeO3 to prepare LaFeO3-RM via the ultrasonic-assisted sol-gel method for the removal of methylene blue (MB) assisted with bisulfite (BS) in the aqueous solution. Characterization by scanning electron microscopy and the Brunauer-Emmett-Teller method indicated that LaFeO3-RM exhibited a large surface area and porous structure with a higher pore volume (i.e. 10 times) compared with the bulk LaFeO3. The XRD, XPS and FTIR results revealed that the support of porous RM not only dispersed LaFeO3 particles but also increased Fe oxidation capability, oxygen-containing functional groups and chemically adsorbed oxygen (from 44.3% to 90.3%) of LaFeO3-RM, which improved the catalytic performance in structure and chemical composition. MB was removed through the synergistic effect of adsorption and catalysis, with MB molecules first absorbed on the surface and then degraded. The removal efficiency was 88.19% in the LaFeO3-RM/BS system under neutral conditions but only 27.09% in the LaFeO3/BS system. The pseudo-first-order kinetic constant of LaFeO3-RM was six times higher than that of LaFeO3. Fe(III) in LaFeO3-RM played a key role in the activation of BS to produce SO 4 ⋅ - by the redox cycle of Fe(III)/Fe(II). Dissolved oxygen was an essential factor for the generation of SO 4 ⋅ - . This work provides both a new approach for using porous industrial waste to improve the catalytic performance of LaFeO3 and guidance for resource utilization of RM in wastewater treatment.

2.
Toxics ; 10(10)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36287886

ABSTRACT

Red-mud leachate from tailings ponds contains Cr(VI), which can pollute groundwater via infiltration through anti-seepage layers. This paper investigates leachate from a red-mud tailings pond in southwest China and the red clay in the surrounding area to simulate the adsorption of Cr(VI) onto clay at different pHs, using geochemical equilibrium software (Visual MINTEQ). We also performed dynamic adsorption testing of Cr(VI) on a clay anti-seepage layer. The dynamic adsorption behaviors and patterns in the dynamic column were predicted using the Thomas and Yoon-Nelson models. Visual MINTEQ predicted that Cr(VI) adsorption in red-mud leachate onto clay was 69.91%, increasing gradually with pH, i.e., adsorption increased under alkaline conditions. Cr(VI) concentration in the effluent was measured using the permeability test through a flexible permeameter when the adsorption saturation time reached 146 days. At a low seepage rate, Cr(VI) adsorption onto the clay anti-seepage layer took longer. Saturation adsorption capacity, q0, and adsorption rate constant, Kth, were determined using the Thomas model; the Yoon-Nelson model was used to determine when the effluent Cr(VI) concentration reached 50% of the initial concentration. The results provide parameters for the design and pollution prediction of the clay anti-seepage layer of red-mud tailings ponds.

3.
Sci Rep ; 12(1): 4424, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35292742

ABSTRACT

In this study, red mud modified by manganese dioxide(MRM) was utilized as an adsorbent to effectively remove Cd2+ from aqueous solution. The characteristics were analysed by SEM-EDS, XRD, BET, FTIR and XPS. Different factors that affected the Cd2+ removal on MRM, such as dosage, initial pH, initial Cd2+ concentration, were investigated using batch adsorption experiments. Simultaneously, the adsorption kinetics, adsorption isotherms and adsorption thermodynamics of Cd2+ were also investigated using adsorption experiments data. The characterization results showed that MRM had a rougher, larger specific surface area and pore volume (38.91 m2 g-1, 0.02 cm3 g-1) than RM (10.22 m2 g-1, 0.73 cm3 g-1). The adsorption experiments found that the equilibrium adsorption capacity of MRM for Cd2+ was significantly increased to 46.36 mg g-1, which was almost three times that of RM. According to the fitting results, the pseudo-second-order kinetic model described the adsorption process better than the pseudo-first-order kinetic model. The Langmuir model fitted the adsorption isotherms well, indicating that the adsorption process was unimolecular layer adsorption and the maximum capacity was 103.59 mg g-1. The thermodynamic parameters indicated that the adsorption process was heat-trapping and spontaneous. Finally, combined XPS and FTIR studies, it was speculated that the adsorption mechanisms should be electrostatic attachment, specific adsorption (i.e., Cd-O or hydroxyl binding) and ion exchange. Therefore, manganese dioxide modified red mud can be an effective and economical alternative to the removal of Cd2+ in the wastewater treatment process.


Subject(s)
Cadmium , Water Pollutants, Chemical , Adsorption , Cadmium/analysis , Hydrogen-Ion Concentration , Kinetics , Manganese Compounds , Oxides , Thermodynamics , Water/chemistry , Water Pollutants, Chemical/analysis
4.
Waste Manag Res ; 39(2): 302-313, 2021 Feb.
Article in English | MEDLINE | ID: mdl-32907511

ABSTRACT

Co-digestion of sewage sludge with food waste is a beneficial pathway for sewage plants to enhance their biogas yield. This paper employs hybrid programming with system dynamics simulation to optimize such a co-digestion system from the perspective of demand-oriented biogas supply chain, thus to improve the efficiency of the biogas utilization. The optimum operational parameters of the co-digestion system are derived from the simulation model. It is demonstrated that the demand-oriented biogas supply mechanism can be effectively driven under market-oriented incentive policy. For better compensation of the external cost to assist the operations of the co-digestion supply chain, it is suggested that the substrate collection and transportation subsidy should be combined with the renewables portfolio standard to be implemented as the optimum incentives. The limitations of the study are discussed to lay the foundation for future improvements.


Subject(s)
Refuse Disposal , Sewage , Anaerobiosis , Biofuels/analysis , Bioreactors , Digestion , Food , Methane
5.
RSC Adv ; 10(73): 44672-44678, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-35516273

ABSTRACT

Three commercially available bentonite-polymer composite geosynthetic clay liners (BPC GCLs) were selected for hydraulic conductivity testing, respectively permeated by two types of bauxite leachates with high alkalinity (pH > 12) and high ionic strength (620.3 mM). The influence of BPC GCLs on the attenuation behavior of Cr/Pb in the bauxite leachates was analyzed. The BPC GCLs with a low hydraulic conductivity (k < 10-10 m s-1) retard the migration of Cr and Pb and the Cr had a higher mobility than Pb in the BPC GCLs. Scanning electron microscope (SEM) microstructure analysis showed that the migration and attenuation behavior of Cr/Pb mainly depended on the chemical properties of the leachates, polymer content and the microstructure of the polymer. Higher attenuation of heavy metals was obtained with bauxite leachates having higher ionic strength. Sufficient polymer content is needed to ensure BPC GCLs have adequately low hydraulic conductivity to suppress attenuation of heavy metals. The gelatinous structure associated with hydrated linear or crosslinked polymer diminishes when the polymer in a BPC is in contact with bauxite leachates. Compromising the hydrogel structure promotes polymer elution and leaves pore space open, resulting in attenuation of heavy metals.

6.
Article in English | MEDLINE | ID: mdl-31185604

ABSTRACT

This study analyzes the leaching behavior of elements from red mud (bauxite residue) at pH values ranging from 2 to 13. The leaching characteristics of metals and contaminated anions in five red mud samples produced by Bayer and combined processes were analyzed using the batch leaching technique following the US Environmental Protection Agency (USEPA) Method 1313. In addition, the geochemical model of MINTEQ 3.1 was used to identify the leaching mechanisms of metals. The results showed that Ca, Mg, and Ba follow the cationic leaching pattern. Al, As, and Cr show an amphoteric leaching pattern. The leaching of Cl- is unaffected by the pH. The maximum leaching concentration of the proprietary elements occurs under extremely acidic conditions (pH = 2), except for As. The leaching concentration of F- reaches 1.4-27.0 mg/L in natural pH conditions (i.e., no acid or base addition). At the same pH level, the leaching concentrations of Pb, As, Cr, and Cu are generally higher from red mud produced by the combined process than that those of red mud from the Bayer process. The leaching concentration of these elements is not strongly related to the total elemental concentration in the red mud. Geochemical modeling analysis indicates that the leaching of metal elements, including Al, Ca, Fe, Cr, Cu, Pb, Mg, Ba, and Mn, in red mud are controlled by solubility. The leaching of these elements depended on the dissolution/precipitation of their (hydr)oxides, carbonate, or sulfate solids.


Subject(s)
Aluminum Oxide/chemistry , Hydrogen-Ion Concentration , Metals/isolation & purification , Carbonates , Metals/toxicity , Oxidation-Reduction , Solubility
7.
Article in English | MEDLINE | ID: mdl-30978989

ABSTRACT

A nationwide investigation was carried out to evaluate the geochemical characteristics and environmental impacts of red mud and leachates from the major alumina plants in China. The chemical and mineralogical compositions of red mud were investigated, and major, minor, and trace elements in the leachates were analyzed. The mineral and chemical compositions of red mud vary over refining processes (i.e., Bayer, sintering, and combined methods) and parental bauxites. The main minerals in the red mud are quartz, calcite, dolomite, hematite, hibschite, sodalite, anhydrite, cancrinite, and gibbsite. The major chemical compositions of red mud are Al, Fe, Si, Ca, Ti, and hydroxides. The associated red mud leachate is hyperalkaline (pH > 12), which can be toxic to aquatic life. The concentrations of Al, Cl-, F-, Na, NO32-, and SO42- in the leachate exceed the recommended groundwater quality standard of China by up to 6637 times. These ions are likely to increase the salinization of the soil and groundwater. The minor elements in red mud leachate include As, B, Ba, Cr, Cu, Fe, Ni, Mn, Mo, Ti, V, and Zn, and the trace elements in red mud leachate include Ag, Be, Cd, Co, Hg, Li, Pb, Sb, Se, Sr, and Tl. Some of these elements have the concentration up to 272 times higher than those of the groundwater quality standard and are toxic to the environment and human health. Therefore, scientific guidance is needed for red mud management, especially for the design of the containment system of the facilities.


Subject(s)
Aluminum Oxide/chemistry , Aluminum Oxide/toxicity , Hazardous Substances/chemistry , Minerals/chemistry , Soil/chemistry , Trace Elements/chemistry , Water Pollutants, Chemical/chemistry , China , Environmental Monitoring , Hazardous Substances/toxicity , Humans , Minerals/toxicity , Trace Elements/toxicity , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...