Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 326(Pt A): 116725, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36375431

ABSTRACT

Although the contamination situation of chromium (Cr) and vanadium (V) have been revealed, the effects of their re-release on ecological risk in contaminated acidic paddy soil are unclear. To evaluate the effects, we assigned soil microcosms across three different concentration (100, 200, 300 mg/L) and introduced Cr and V alone or combination into an already slightly contaminated acidic soil. We found that Cr and V alone or interacted to increased soil bioavailable-metals, changed soil properties and nutrients to varying degrees. Meanwhile, soil ammoniacal nitrogen (NH4+-N) and nitrate nitrogen (NO3--N) contents, nitrogen (N) -cycling enzyme activities, microbial mass N were significantly influenced by Cr addition. Which demonstrated that Cr re-release may disturb soil N cycle. However, V alone significantly improved soil NO3--N contents, cellulase and dehydrogenase activities, soil respiration intensity and microbial mass carbon: nitrogen. Meanwhile, V addition also decreased bacterial diversity while Cr addition increased bacterial diversity and shaped new bacterial community, some V(V) and Cr (VI) reducing bacteria were identified. Heatmap of Pearson correlation and Redundancy analysis showed that NH4+-N, NO3--N, Potassium, Phosphorus, and Cr played an important role in bacterial community structure. These findings suggested that re-release of Cr and V disturbed soil function and raised ecological risks, and the power to destroy the ecosystem stability originated from Cr was much stronger than V. This study was contributed to understand the effects of Cr and V re-release on microecology in contaminated acidic agricultural soil.


Subject(s)
Soil Pollutants , Soil , Soil/chemistry , Chromium/analysis , Vanadium/pharmacology , Soil Microbiology , Soil Pollutants/analysis , Ecosystem , Bacteria , Nitrogen/analysis , Nutrients
2.
Environ Pollut ; 308: 119585, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35728693

ABSTRACT

Microbially induced carbonate precipitation (MICP) is a technique used extensively to address heavy metal pollution but its micro-dynamic process remains rarely explored. In this study, A novel Cd-tolerant ureolytic bacterium DL-1 (Pseudochrobactrum sp.) was used to study the micro-dynamic process. With conditions optimized by response surface methodology, the removal efficiency of Cd2+ could achieve 99.89%. Three components were separated and characterized in the reaction mixture of Cd2+ removal by MICP. The quantitative-dynamic distribution of Cd2+ in different components was revealed. Five synergistic effects for Cd2+ removal were found, including co-precipitation, adsorption by precipitation, crystal precipitation on the cell surface, intracellular accumulation and extracellular chemisorption. Importantly, during Cd2+ removal by MICP, the phenomenon that crystalline nanoparticles adhere to the cell surface, but without any micrometer-sized precipitation encapsulated bacterial cells was observed. This indicated that the previously studied model of bacterial cells as nucleation sites for metal cation precipitation and crystal growth is oversimplified. Our findings provided valuable insights into the mechanism of heavy metals removal by MICP, and a more straightforward method for studying biomineralization-related dynamic process.


Subject(s)
Cadmium , Metals, Heavy , Bacteria/metabolism , Cadmium/metabolism , Calcium Carbonate/chemistry , Carbonates/chemistry , Metals, Heavy/metabolism
3.
Front Plant Sci ; 13: 808844, 2022.
Article in English | MEDLINE | ID: mdl-35283903

ABSTRACT

Vetiver grass (Chrysopogon zizanioides L.) has been used to remediate cadmium (Cd)-contaminated soil, while there have been few studies on the influence of Cd exposure on the rhizospheric microbial community and transcriptional expression of C. zizanioides. In this study, we investigated the response of the rhizospheric microbial community and transcriptional expression of C. zizanioides in 20 mg/kg Cd-contaminated soil. The results showed that Cd levels in the roots and shoots of C. zizanioides reached 250.80 and 73.40 mg/kg, respectively. The Cd exposure changed the rhizospheric bacterial community, resulting in the significant enrichment of Sphingomonas, Lysobacter, and Gemmatimonadetes in Cd-contaminated soil. In addition, 880 and 3,419 differentially expressed genes were identified in the plant roots and shoots, respectively, in response to Cd stress. Among these, the overexpressed genes associated with redox homeostasis, glutathione (GSH) metabolism, cell wall biosynthesis, and transmembrane transport pathways were found to participate in Cd detoxification in C. zizanioides. These findings could be useful for understanding the selective variation of the rhizospheric microbial community and the detoxification mechanisms of C. zizanioides in Cd phytoremediation.

4.
J Hazard Mater ; 400: 123116, 2020 12 05.
Article in English | MEDLINE | ID: mdl-32569980

ABSTRACT

Microbial induced carbonate precipitation (MICP) is known as a significant process for remediating heavy metals contaminated environment. In this study, a novel Cd-resistant ureolytic bacteria was isolated and identified as Enterobacter sp. Its performances for immobilizing Cd in solution and soil were systematically discussed at different treatment conditions. Results showed that initial pH and Cd concentration were important parameters to influence Cd removal rate. The maximal Cd removal rate in solution reached 99.50 % within 7 days by MICP. The precipitation produced in Cd removal process were characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectrometer to understand the removal mechanism. Analyses showed that Cd removal mechanism of CJW-1 was predominately via biominerals including calcites and vaterites to absorb Cd2+. Cd immobilization tests demonstrated that the highest Cd-immobilization rate in soil could reach 56.10 %. Although all treatments contribute to soil pH, fertility, and enzyme activities improvement, oyster shell wastes (OS) had a better effect on soil cation exchange capacity. All treatments had negative effects on soil respiration and bacterial community, but OS can alleviate such adverse influence. Our results emphasized that Cd-resistant ureolytic bacteria strain CJW-1 combined with OS had excellent ability and reuse value to remediate Cd-contaminated environment.


Subject(s)
Soil Pollutants , Soil , Cadmium , Calcium Carbonate , Carbonates , Water
5.
J Hazard Mater ; 398: 122732, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32497855

ABSTRACT

Leaching technology has been widely applied to remove heavy metals (HMs) from soil, although the synchronous recovery of multiple HMs during the leaching process was rarely studied. In this study, we synthesized silicon sulfuretted nanoscale zero-valent iron (FeSSi), which was coated with sodium alginate (SA) to form the gel beads (SA-FeSSi). The specific surface area of FeSSi (101.61 m2/g) was significantly increased by adding SiO2 seeding. The SA stabilization reduced the aggregation of FeSSi. The removal efficiency for cadmium (Cd), lead (Pb), nickle (Ni) and chromium (Cr) by SA-FeSSi in solution reached 80.10 %, 99.96 %, 66.80 % and 80.46 %, respectively. The removal kinetics was well fitted with the pseudo-second-order model. Leaching experiments showed that the recovery efficiency of HMs from solution (Rr/w) and soil (Rr/s) reached to the ranges of 59.79 %-98.70 % and 25.94 %-62.67 % with the addition of 0.3 g SA-FeSSi. Moreover, the leaching conditions including pH, temperature, adsorbent dosage, leaching agent concentrations, leaching time and leaching cycles were also investigated. Our results suggested that SA-FeSSi had an excellent HMs removal capacity and the recovery of HMs during the leaching process by SA-FeSSi could be a potential pathway to reuse the metal resources from soil.

6.
Chemosphere ; 242: 125251, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31896185

ABSTRACT

A novel nano-composite material (CMC-FeS@HA) combining the advantages of humic acid (HA) and FeS was synthesized to remediate hexavalent chromium (Cr(VI)) contaminated soil along with chromium (Cr) resistant microflora. The characteristic analysis confirmed the successful synthesis of the nano-composite, which provided further mechanism evidence of its detoxification effect on polluted soil. Energy Dispersive System analysis proved the adsorption of the microbe consortium (MC) for Cr. After remediation, Cr(VI) in all treatments was dramatically reduced and the leachable Cr in soil treated by CMC-FeS@HA and MC decreased 89.14% compared with control. The result of BCR sequential extraction showed that Cr was stabilized, whose form changed to oxidizable and residual from HOAC-extractable. Besides, CMC-FeS@HA, as a sustained-release acid with high biocompatibility, could continuously decrease the pH of strongly alkaline soil and created a suitable micro-ecological environment for soil microorganisms. Moreover, CMC-FeS@HA dramatically improved soil physicochemical property, soil microbial activity (dehydrogenase, hydrolase, urease, and invertase activities), and soil microecological diversity. In total, this study provided a useful technology for soil remediation, which innovatively combined chemical remediation and microbial-remediation with a positive effect on soil quality, providing a good approach for the multiple technology combination in the environmental cause.


Subject(s)
Chromium/analysis , Environmental Restoration and Remediation/methods , Soil Pollutants/analysis , Adsorption , Environmental Pollution/analysis , Humic Substances/analysis , Oxidation-Reduction , Soil/chemistry
7.
J Hazard Mater ; 382: 121093, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31476721

ABSTRACT

In-situ passivation of soil chromium (Cr) contamination based on chemical and biological passivators has been widely concerned, however, the cooperative effect of two types of passivators on Cr passivation and soil properties was little investigated. In this study, nano zero valent iron (nZVI) and humic acid (HA) as the chemical passivators were selected and were combined with a novel Cr resistant strain QY-1 to study these two points. Results demonstrated that the combination was more effective in Cr immobilization, among which, HA + QY-1 had the highest passivation rate (82.83%), followed by nZVI + QY-1. HA + QY-1 alleviated soil Cr stress most efficiently as its soil relevant fertility indicators, microbial quantity, respiration and seed gemination rate significantly increased. On the contrary, nZVI decreased soil respiration and microbial abundance, but the addition of QY-1 could relieve this phenomenon. The results highlighted the ability of HA + QY-1 to remediate Cr contaminated soil and improve soil stability.


Subject(s)
Bacteria/metabolism , Chromium , Humic Substances , Iron/chemistry , Metal Nanoparticles/chemistry , Soil Pollutants , Chromium/chemistry , Chromium/metabolism , Environmental Restoration and Remediation/methods , Soil/chemistry , Soil Microbiology , Soil Pollutants/chemistry , Soil Pollutants/metabolism
8.
Environ Pollut ; 255(Pt 2): 113252, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31542610

ABSTRACT

To develop a high efficient and eco-friendly approach to remediate cadmium (Cd) contaminated soil, we designed the activation and extraction systems, on the basis of combined effects between the ability of organic acids to activate Cd and the ability of mushroom accumulator (Lentinus edodes) to extract Cd. The results showed that the proportion of acetic acid-extractable Cd significant increased with the application of exogenous organic acids. Additionally, soil microecology analysis indicated that exogenous organic acids evidently enhanced the numbers of microbial cells and the activities of soil enzymes. Besides, high throughput sequencing analysis revealed exogenous organic acids improved the diversity and structure of soil bacterial community after remediation. Particularly, the combination application of mushroom and exogenous citric acid had highest accumulation efficiency of Cd, and its efficiency was 59.19% higher than single mushroom treatment. Hence, exogenous organic acids could alleviate soil microecology and increase mycoextraction efficiency, which suggested it was a feasible route to remediate Cd contaminated soil by the activation and extraction systems.


Subject(s)
Cadmium/chemistry , Soil Pollutants/metabolism , Agaricales , Bacteria , Biodegradation, Environmental , Cadmium/analysis , Organic Chemicals , Shiitake Mushrooms , Soil/chemistry , Soil Pollutants/analysis
9.
Environ Pollut ; 252(Pt A): 553-561, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31181500

ABSTRACT

Remediation of soil chromium (Cr) pollution is becoming more and more urgent. In this study, a multi-loaded nano-zero-valent iron (nZVI) material (CNH) was prepared by carboxymethyl cellulose (CMC) and humic acid (HA) as dispersant and support agent, respectively, and the remediation effect of CNH, HA and CN (CNH without HA) for Cr contaminated soil was investigated within 90 d cycle. After 7 d treatment of CNH, the HOAc-extractable Cr decreased significantly. After the 90 d remediation, the HOAc-extractable Cr decreased most in the treatment of 3% CNH, about 74.48% lower than control. All treatments eventually caused different decline of soil pH, with a range of 0.12-0.54, in which the CNH treatment group had the least depression. HA loading significantly weakened the toxicity of nZVI, resulting in the higher soil microbial quantity and enzyme activities compared with CN. Additionally, the improvement of soil microecology by CNH and HA was positively correlated with the ratio of application, while CN was negatively correlated (except FDA enzyme activity) with these indexes. These results emphasized the potential of the synthesized CNH as a promising material to remediate Cr contaminated soil. Furthermore, details of possible mechanistic insight into the Cr remediation were carefully discussed.


Subject(s)
Chromium/chemistry , Environmental Pollution/analysis , Environmental Restoration and Remediation/methods , Iron/chemistry , Soil Pollutants/analysis , Soil/chemistry , Carboxymethylcellulose Sodium , Humic Substances , Soil Microbiology
10.
Chemosphere ; 228: 44-53, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31022619

ABSTRACT

Although iron nanoparticles (NPs) have been used for environmental remediation of heavy metal, their potential to remediate lead (Pb) contaminated soil and effect on soil micro-ecology is unclear. The purpose of this study was to investigate the potential of nanoscale zerovalent iron (nZVI), nanoscale zerovalent iron supported by biochar (nZVI@BC), ferrous sulfide (FeS-NPs), ferrous sulfide supported by biochar (FeS-NPs@BC), ferriferrous oxide (Fe3O4-NPs) and ferriferrous oxide supported by biochar (Fe3O4-NPs@BC) to remediate Pb contaminated soil and the influences for soil micro-ecology. The results showed that biochar (BC) could improve the crystal shape and superficial area of iron-based nanoparticles. Soil pH values was significantly decreased by FeS-NPs and FeS-NPs@BC, but increased by other iron-nanoparticles. The ability to reduce available Pb concentration showed significant difference among these iron-nanoparticles, that is, the immobilized rate were nZVI by 45.80%, nZVI@BC by 54.68%, FeS-NPs by 2.70%, FeS-NPs@BC by 5.13%, Fe3O4-NPs by 47.47%, Fe3O4-NPs@BC by 30.51% at day 90. Almost all soil enzyme activities in Fe3O4-NPs and Fe3O4-NPs@BC groups were increased, but the majority of the enzyme activities were inhibited in other iron-based nanoparticles groups, while the maximum bacterial number was determined in FeS-NPs group. Furthermore, microbial diversity analysis showed that FeS-NPs has significantly changed microbial community richness and diversity, followed by nZVI and Fe3O4-NPs. Accordingly, our results suggested that nZVI@BC had the best immobilization effect on Pb in high-concentration Pb-contaminated alkaline soil, but the toxic effect of Fe3O4-NPs on soil micro-ecology was relatively minimal.


Subject(s)
Environmental Restoration and Remediation/methods , Iron/chemistry , Lead/analysis , Nanoparticles , Soil Pollutants/chemistry , Bacteria/cytology , Bacteria/enzymology , Charcoal , Ferrous Compounds , Iron/analysis , Nanoparticles/chemistry , Soil/chemistry , Soil Pollutants/analysis
11.
Ecotoxicol Environ Saf ; 166: 116-122, 2018 Dec 30.
Article in English | MEDLINE | ID: mdl-30253286

ABSTRACT

Although the effect of heavy metal on soil microbial diversity was widely studied, the interaction among micro-ecological environment in heavy metal contaminated soil was less known. In this study, we systematically investigated the influence of cadmium (Cd) on soil micro-ecological environment (pH, nutrient content, soil enzyme activities, microbial biomass, bacterial and fungal diversities). Results showed that pH values slightly decreased with the Cd level increase, whereas the nutrient content including of Olsen-P (OSP), Alkeline-N (ALN), Olsen-K (OSK) and organic matter (OM) did not show significant difference in different treatments. In contrast to physicochemical properties, the biochemical qualities were easily influenced by Cd pollutant, resulting in soil microbial numbers and enzyme activities significantly decreased. High-throughput sequencing showed that microbial community composition was significantly affected by heavy metal. For bacteria, Actinobacteria abundance significantly decreased in Cd treated soil, corresponding to Proteobacteria and Firmicutes increased. For fungi, the most dominant phyla member (Ascomycota) was significantly decreased whereas Zygomycota significantly increased with Cd addition. These results further revealed the integral interrelation of micro-ecology environmental players under the stress of different Cd levels.


Subject(s)
Cadmium/analysis , Metals, Heavy/analysis , Microbiota/drug effects , Soil Microbiology , Soil Pollutants/analysis , Bacteria/drug effects , Biomass , Ecology , Fungi/drug effects , Soil/chemistry
12.
Environ Pollut ; 240: 717-724, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29778057

ABSTRACT

In this study, the dynamic Cr(VI) removal process from water by the synthesized multilayer material coated nanoscale zerovalent iron (SBC-nZVI) was systematically discussed at different treatment conditions. The results showed that initial pH, contact time, Cr(VI) concentration and the dosage of SBC-nZVI were important parameters that influenced the Cr(VI) removal efficiency. The major Cr(VI) removal occurred within 60 min and gradually tend to equilibrium with consistent treatment. The removal efficiency was highly depended on pH values and the adsorption kinetics agreed well with the pseduo-second-order model (PSO). When the initial Cr(VI) concentration was below 15 mg/L, the removal rate could reach to about 100%. Moreover, the removal efficiency increased with the increase of SBC-nZVI dosage, which related to the increase of reactive sites. To understand the removal mechanism, SBC-nZVI before and after reaction with Cr(VI) were characterized by fourier transform infrared spectra (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and X-ray photoelectron spectroscopy (XPS). These analysis showed that the interaction of SBC-nZVI with Cr(VI) was mainly controlled by reduction and electrostatic attraction. Therefore, these results explained the interaction between Cr(VI) and SBC-nZVI material in detail, and further proved that SBC-nZVI could be an effective material to remove Cr(VI) from water.


Subject(s)
Chromium/analysis , Environmental Restoration and Remediation/methods , Iron/chemistry , Water Pollutants, Chemical/analysis , Water/chemistry , Adsorption , Kinetics , Microscopy, Electron, Scanning/methods , Photoelectron Spectroscopy/methods , X-Ray Diffraction/methods
13.
Biosens Bioelectron ; 73: 256-263, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26092130

ABSTRACT

A rapid and ultrasensitive signal-off photoelectrochemical sensor has been developed under visible-light irradiation, for the detection of perfluorooctanoic acid (PFOA), especially low level PFOA present in environment, whereby a novel nanostructured probe made of molecularly imprinted polymer (MIP) modified AgI nanoparticles-BiOI nanoflake arrays (AgI-BiOINFs) is designed as the photoactive electrode (denoted as MIP@AgI-BiOINFs). Here, the unique nanoarchitectured hybrid of AgI-BiOINFs was first in situ synthesized via a facile successive ionic layer adsorption and reaction (SILAR) approach and then employed as a matrix to graft the recognition element of MIP. Such a newly designed PEC sensor exhibits high sensitivity and selectivity for the determination of PFOA. The PEC analysis is highly linear over the PFOA concentration ranging from 0.02 to 1000.0 ppb with a detection limit of 0.01 ppb (S/N=3). This value obtained by using the facile PEC sensor is comparable to the results obtained by using well-established liquid chromatography-tandem mass spectrometry (LC-MS/MS). Toward practical applications, this low-cost and sensitive assay was successfully applied to measure PFOA in real water samples.


Subject(s)
Biosensing Techniques/methods , Caprylates/analysis , Fluorocarbons/analysis , Biosensing Techniques/statistics & numerical data , Bismuth , Electrochemical Techniques/methods , Iodides , Metal Nanoparticles/chemistry , Molecular Imprinting/methods , Nanocomposites/chemistry , Silver Compounds , Water Pollutants, Chemical/analysis
14.
Anal Chim Acta ; 785: 34-42, 2013 Jun 27.
Article in English | MEDLINE | ID: mdl-23764441

ABSTRACT

A new, highly sensitive bifunctional electrochemical sensor for the simultaneous determination of pentachlorophenol (PCP) and copper ions (Cu(2+)) has been developed, where organic-inorganic hybrid ultrathin films were fabricated by alternate assembly of humic acid (HA) and exfoliated Mg-Al-layered double hydroxide (LDH) nanosheets onto ITO substrates via a layer-by-layer (LBL) approach. The multilayer films were then characterized by means of UV-vis spectrometry, scanning electron microscopy (SEM), and atomic force microscope (AFM). These films were found to have a relatively smooth surface with almost equal amounts of HA incorporated in each cycle. Its electrochemical performance was systematically investigated. Our results demonstrate that such a newly designed (LDH/HA)n multilayer films, combining the individual properties of HA (dual recognition ability for organic herbicides and metal ions) together with LDH nanosheets (a rigid inorganic matrix), can be applied to the simultaneous analysis of PCP and Cu(II) without interference from each other. The LBL assembled nanoarchitectures were further investigated by X-ray photoelectron spectroscopy (XPS) and infrared spectroscopy (IR), which provides insight for bifunctional sensing behavior. Under the optimized conditions, the detection limit was found to be as low as 0.4 nM PCP, well below the guideline value of PCP in drinking water (3.7 nM) set by the United States Environmental Protection Agency (U.S. EPA), and 2.0 nM Cu(2+), much below the guideline value (2.0 mg L(-1), ~31.2 nM) from the World Health Organization (WHO), respectively. Toward the goal for practical applications, this simple and cost-effective probe was further evaluated by monitoring PCP and Cu(II) in water samples.


Subject(s)
Copper/analysis , Electrochemical Techniques , Humic Substances/analysis , Hydroxides/chemistry , Nanostructures/chemistry , Pentachlorophenol/analysis , Drinking Water/analysis , Electrodes , Ions/chemistry , Metals/chemistry , Tin Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...