Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Phys ; 122(13)2017.
Article in English | MEDLINE | ID: mdl-30410187

ABSTRACT

Femtosecond laser surface processing (FLSP) can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or super-hydrophobicity/-hydrophilicity. In this study, the subsurface microstructure of a series of mound-like FLSP structures formed on commercially pure titanium using five combinations of laser fluence and cumulative pulse counts was studied. Using a dual beam Scanning Electron Microscope with a Focused Ion Beam, the subsurface microstructure for each FLSP structure type was revealed by cross-sectioning. The microstructure of the mounds formed using the lowest fluence value consists of the original Ti grains. This is evidence that preferential laser ablation is the primary formation mechanism. However, the underlying microstructure of mounds produced using higher fluence values was composed of a distinct smaller-grained α-Ti region adjacent to the original larger Ti grains remaining deeper beneath the surface. This layer was attributed to resolidification of molten Ti from the hydrodynamic Marangoni effect driven fluid flow of molten Ti, which is the result of the femtosecond pulse interaction with the material.

2.
Appl Surf Sci ; 396: 1170-1176, 2017 Feb 28.
Article in English | MEDLINE | ID: mdl-30410203

ABSTRACT

Femtosecond laser surface processing is a technology that can be used to functionalize many surfaces, imparting specialized properties such as increased broadband optical absorption or superhydrophilicity/superhydrophobicity. In this study, two unique classes of surface structures, below surface growth (BSG) and above surface growth (ASG) mounds, were formed by femtosecond laser surface processing on amorphous and polycrystalline Ni60Nb40 with two different grain sizes. Cross sectional imaging of these mounds revealed thermal evidence of the unique formation processes for each class of surface structure. BSG mounds formed on all three substrates using the same laser parameters had similar surface morphology. The microstructures in the mounds were unaltered compared with the substrate before laser processing, suggesting their formation was dominated by preferential valley ablation. ASG mounds had similar morphology when formed on the polycrystalline Ni60Nb40 substrates with 100 nm and 2 [H9262]m grain size. However, the ASG mounds had significantly wider diameter and higher peak-to-valley heights when the substrate was amorphous Ni60Nb40. Hydrodynamic melting was primarily responsible for ASG mound formation. On amorphous Ni60Nb40 substrates, the ASG mounds are most likely larger due to lower thermal diffusivity. There was clear difference in growth mechanism of femtosecond laser processed BSG and ASG mounds, and grain size does not appear to be a factor.

3.
Appl Phys Lett ; 108(3)2016.
Article in English | MEDLINE | ID: mdl-30416199

ABSTRACT

Femtosecond laser surface processing (FLSP) is an emerging technique for creating functionalized surfaces with specialized properties, such as broadband optical absorption or superhydrophobicity/superhydrophilicity. It has been demonstrated in the past that FLSP can be used to form two distinct classes of mound-like, self-organized micro/nanostructures on the surfaces of various metals. Here, the formation mechanisms of below surface growth (BSG) and above surface growth (ASG) mounds on polycrystalline Ni60Nb40 are studied. Cross-sectional imaging of these mounds by focused ion beam milling and subsequent scanning electron microscopy revealed evidence of the unique formation processes for each class of microstructure. BSG-mound formation during FLSP did not alter the microstructure of the base material, indicating preferential valley ablation as the primary formation mechanism. For ASG-mounds, the microstructure at the peaks of the mounds was clearly different from the base material. Transmission electron microscopy revealed that hydrodynamic melting of the surface occurred during FLSP under ASG-mound forming conditions. Thus, there is a clear difference in the formation mechanisms of ASG- and BSG-mounds during FLSP.

SELECTION OF CITATIONS
SEARCH DETAIL
...