Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 349
Filter
1.
Cancer Drug Resist ; 7: 16, 2024.
Article in English | MEDLINE | ID: mdl-38835342

ABSTRACT

Aim: Glioma accounts for 81% of all cancers of the nervous system cancers and presents one of the most drug-resistant malignancies, resulting in a relatively high mortality rate. Despite extensive efforts, the complete treatment options for glioma remain elusive. The effect of isocucurbitacin B (isocuB), a natural compound extracted from melon pedicels, on glioma has not been investigated. This study aims to investigate the inhibitory effect of isocuB on glioma and elucidate its underlying mechanisms, with the objective of developing it as a potential therapeutic agent for glioma. Methods: We used network pharmacology and bioinformatics analysis to predict potential targets and associated pathways of isocuB in glioma. Subsequently, the inhibitory effect of isocuB on glioma and its related mechanisms were assessed through Counting Kit-8 (CCK-8), wound healing, transwell, Western blot (WB), reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and other in vitro experiments, alongside tumor formation experiments in nude mice. Results: Based on this investigation, it suggested that isocuB might inhibit the growth of gliomas through the PI3K-AKT and MAPK pathways. Additionally, we proposed that isocuB may enhance glioma drug sensitivity to temozolomide (TMZ) via modulation of hsa-mir-1286a. The CCK-8 assay revealed that isocuB exhibited inhibitory effects on U251 and U87 proliferation and outperformed TMZ. Wound healing and transwell experiments showed that isocuB inhibited the invasion and migration of U251 cells by suppressing the activity of MMP-2/9, N-cadherin, and Vimentin. The TdT-mediated dUTP-biotin nick end labeling (TUNEL) and flow cytometry (FCM) assays revealed that isocuB induced cell apoptosis through inhibition of BCL-2. Subsequently, we conducted RT-qPCR and WB experiments, which revealed that PI3K/AKT and MAPK pathways might be involved in the mechanism of the inhibition isocuB on glioma. Additionally, isocuB promoted the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a. Furthermore, we constructed TMZ-resistant U251 strains and demonstrated effective inhibition by isocuB against these resistant strains. Finally, we confirmed that isocuB can inhibit tumor growth in vivo through experiments on tumors in nude mice. Conclusion: IsocuB may protect against glioma by acting on the PI3K/AKT and MAPK pathways and promote the sensitivity of glioma U251 to TMZ by inhibiting hsa-mir-1286a.

2.
MedComm (2020) ; 5(5): e562, 2024 May.
Article in English | MEDLINE | ID: mdl-38737470

ABSTRACT

The proteasome inhibitor bortezomib (BTZ) is the first-line therapy for multiple myeloma (MM). BTZ resistance largely limits its clinical application in MM. Interleukin-33 (IL-33) exerts antitumor effects through various mechanisms, including enhancing antitumor immunity and promoting the apoptosis of cancer cells. Here, the synergistic anti-MM effect of IL-33 and BTZ was verified, and the underlying mechanisms were elucidated. Bioinformatic analysis indicated that IL-33 expression levels were downregulated in MM, and that BTZ-treated MM patients with high IL-33 levels had better prognosis than those with low IL-33 levels. Moreover, the patients with high IL-33 levels had a better treatment response to BTZ. Further immune analysis suggested that IL-33 can enhance the anti-MM immunity. IL-33 and BTZ synergistically inhibited proliferation and induced apoptosis of MM cells, which was mediated by the excessive accumulation of cellular reactive oxygen species (ROS). Furthermore, increased ROS hindered the nuclear translocation of NF-κB-p65, thereby decreasing the transcription of target stemness-related genes (SOX2, MYC, and OCT3/4). These effects induced by the combination therapy could be reversed by eliminating ROS by N-acetylcysteine. In conclusion, our results indicated that IL-33 enhanced the sensitivity of MM to BTZ through ROS-mediated inhibition of nuclear factor kappa-B (NF-κB) signal and stemness properties.

3.
Front Pharmacol ; 15: 1353056, 2024.
Article in English | MEDLINE | ID: mdl-38751791

ABSTRACT

Gynecological cancers pose a significant threat to women's health. Although the pathogenesis of gynecological cancer remains incompletely understood, angiogenesis is widely acknowledged as a fundamental pathological mechanism driving tumor cell growth, invasion, and metastasis. Targeting angiogenesis through natural products has emerged as a crucial strategy for treating gynecological cancer. In this review, we conducted comprehensive searches in PubMed, Embase, Web of Science, Science Direct, and CNKI databases from the first publication until May 2023 to identify natural products that target angiogenesis in gynecologic tumors. Our findings revealed 63 natural products with anti-angiogenic activity against gynecological cancer. These results underscore the significance of these natural products in augmenting their anticancer effects by modulating other factors within the tumor microenvironment via their impact on angiogenesis. This article focuses on exploring the potential of natural products in targeting blood vessels within gynecological cancer to provide novel research perspectives for targeted vascular therapy while laying a solid theoretical foundation for new drug development.

4.
Signal Transduct Target Ther ; 9(1): 133, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38744811

ABSTRACT

Sirtuin 3 (SIRT3) is well known as a conserved nicotinamide adenine dinucleotide+ (NAD+)-dependent deacetylase located in the mitochondria that may regulate oxidative stress, catabolism and ATP production. Accumulating evidence has recently revealed that SIRT3 plays its critical roles in cardiac fibrosis, myocardial fibrosis and even heart failure (HF), through its deacetylation modifications. Accordingly, discovery of SIRT3 activators and elucidating their underlying mechanisms of HF should be urgently needed. Herein, we identified a new small-molecule activator of SIRT3 (named 2-APQC) by the structure-based drug designing strategy. 2-APQC was shown to alleviate isoproterenol (ISO)-induced cardiac hypertrophy and myocardial fibrosis in vitro and in vivo rat models. Importantly, in SIRT3 knockout mice, 2-APQC could not relieve HF, suggesting that 2-APQC is dependent on SIRT3 for its protective role. Mechanically, 2-APQC was found to inhibit the mammalian target of rapamycin (mTOR)-p70 ribosomal protein S6 kinase (p70S6K), c-jun N-terminal kinase (JNK) and transforming growth factor-ß (TGF-ß)/ small mother against decapentaplegic 3 (Smad3) pathways to improve ISO-induced cardiac hypertrophy and myocardial fibrosis. Based upon RNA-seq analyses, we demonstrated that SIRT3-pyrroline-5-carboxylate reductase 1 (PYCR1) axis was closely assoiated with HF. By activating PYCR1, 2-APQC was shown to enhance mitochondrial proline metabolism, inhibited reactive oxygen species (ROS)-p38 mitogen activated protein kinase (p38MAPK) pathway and thereby protecting against ISO-induced mitochondrialoxidative damage. Moreover, activation of SIRT3 by 2-APQC could facilitate AMP-activated protein kinase (AMPK)-Parkin axis to inhibit ISO-induced necrosis. Together, our results demonstrate that 2-APQC is a targeted SIRT3 activator that alleviates myocardial hypertrophy and fibrosis by regulating mitochondrial homeostasis, which may provide a new clue on exploiting a promising drug candidate for the future HF therapeutics.


Subject(s)
Cardiomegaly , Fibrosis , Sirtuin 3 , Animals , Sirtuin 3/genetics , Sirtuin 3/metabolism , Cardiomegaly/genetics , Cardiomegaly/drug therapy , Cardiomegaly/pathology , Cardiomegaly/chemically induced , Cardiomegaly/metabolism , Fibrosis/genetics , Rats , Mice , Isoproterenol , Humans , Mice, Knockout , Homeostasis/drug effects , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/pathology , Mitochondria/metabolism , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/pathology , Myocardium/pathology , Myocardium/metabolism , Male
5.
Front Microbiol ; 15: 1344284, 2024.
Article in English | MEDLINE | ID: mdl-38699473

ABSTRACT

Glioma, the most prevalent primary tumor of the central nervous system, is characterized by a poor prognosis and a high recurrence rate. The interplay between microbes, such as gut and tumor microbiota, and the host has underscored the significant impact of microorganisms on disease progression. Bifidobacterium, a beneficial bacterial strain found in the human and animal intestines, exhibits inhibitory effects against various diseases. However, the existing body of evidence pertaining to the influence of Bifidobacterium on glioma remains insufficient. Here, we found that Bifidobacterium reduces tumor volume and prolongs survival time in an orthotopic mouse model of glioma. Experiments elucidated that Bifidobacterium suppresses the MEK/ERK cascade. Additionally, we noted an increase in the α-diversity of the tumor microbiota, along with an augmented relative abundance of Bifidobacterium in the gut microbiota. This rise in Bifidobacterium levels within the intestine may be attributed to a concurrent increase in Bifidobacterium within the glioma. Additionally, Bifidobacterium induced alterations in serum metabolites, particularly those comprised of organonitrogen compounds. Thus, our findings showed that Bifidobacterium can suppress glioma growth by inhibiting the MEK/ERK cascade and regulating tumor, and gut microbiota, and serum metabolites in mice, indicating the promising therapeutic prospects of Bifidobacterium against glioma.

6.
Heliyon ; 10(7): e28398, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38560255

ABSTRACT

Myocardial infarction (MI) is a leading cause of death worldwide, resulting in extensive loss of cardiomyocytes and subsequent heart failure. Inducing cardiac differentiation of stem cells is a potential approach for myocardial regeneration therapy to improve post-MI prognosis. Mesenchymal stem cells (MSCs) have several advantages, including immune privilege and multipotent differentiation potential. This study aimed to explore the feasibility of chemically inducing human amniotic membrane MSCs (hAMSCs) to differentiate into cardiomyocytes in vitro. Human amniotic membrane (AM) samples were obtained from routine cesarean sections at Far Eastern Memorial Hospital. The isolated cells exhibited spindle-shaped morphology and expressed surface antigens CD73, CD90, CD105, and CD44, while lacking expression of CD19, CD11b, CD19, CD45, and HLA-DR. The SSEA-1, SSEA-3, and SSEA-4 markers were also positive, and the cells displayed the ability for tri-lineage differentiation into adipocytes, chondrocytes, and osteoblasts. The expression levels of MLC2v, Nkx2.5, and MyoD were analyzed using qPCR after applying various protocols for chemical induction, including BMP4, ActivinA, 5-azacytidine, CHIR99021, and IWP2 on hAMSCs. The group treated with 5 ng/ml BMP4, 10 ng/ml Activin A, 10 µM 5-azacytidine, 7.5 µM CHIR99021, and 5 µM IWP 2 expressed the highest levels of these genes. Furthermore, immunofluorescence staining demonstrated the expression of α-actinin and Troponin T in this group. In conclusion, this study demonstrated that hAMSCs can be chemically induced to differentiate into cardiomyocyte-like cells in vitro. However, to improve the functionality of the differentiated cells, further investigation of inductive protocols and regimens is needed.

7.
Transl Oncol ; 45: 101964, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38657441

ABSTRACT

BACKGROUND: Although there is evidence of the association between RA and NSCLC, little is known about their interaction mechanisms. The aim of this study is to identify potential hub genes and biological mechanism in RA and NSCLC via integrated bioinformatics analysis. METHODS: The gene expression datasets of RA and NSCLC were downloaded to discover and validate hub genes. After identifying DEGs, we performed enrichment analysis, PPI network construction and module analysis, selection and validation of hub genes. Moreover, we selected the hub gene PTPRC for expression and prognosis analysis, immune analysis, mutation and methylation analysis in NSCLC. Finally, we performed real-time PCR, colony formation assay, wound healing assay, transwell invasion assay, sphere formation assay and western blotting to validate the role of PTPRC in A549 cells. RESULTS: We obtained 320 DEGs for subsequent analysis. Enrichment results showed that the DEGs were mainly involved in Th1, Th2 and Th17 cell differentiation. In addition, four hub genes, BIRC5, PTPRC, PLEK, and FYN, were identified after selection and validation. These hub genes were subsequently shown to be closely associated with immune cells and related pathways. In NSCLC, PTPRC was downregulated, positively correlated with immune infiltration and immune cells. Experiments showed that PTPRC could promote the proliferation, migration and invasion, and the ability to form spheroids of A549 cells. In addition, PTPRC could regulate the increased expression of CD45, ß-catenin, c-Myc and LEF1 proteins. CONCLUSIONS: This study explored the hub genes and related mechanisms of RA and NSCLC, demonstrated the central role of the inflammatory response and the adaptive immune system, and identified PTPRC as an immune-related biomarker and potential therapeutic target for RA and NSCLC patients. In addition, PTPRC can significantly promote the proliferation, migration and invasion of A549 cells, and its mechanism may be to promote the EMT process by regulating the Wnt signaling pathway and promote cell stemness, which in turn has a promoting effect on A549 cells.

8.
J Ethnopharmacol ; 328: 118117, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38548120

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Chuanxiong, a plant of the Umbelliferae family, is a genuine medicinal herb from Sichuan Province. Phthalides are one of its main active components and exhibit good protective effect against cerebrovascular diseases. However, the mechanism by which phthalides exert neuroprotective effects is still largely unclear. AIM OF THE STUDY: In this study, we extracted a phthalein component (named as QBT) from Ligusticum Chuanxiong, and investigated its neuroprotective effects against vascular dementia (VaD) rats and the underlying mechanism, focusing on the chemokine 12 (CXCL12)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis. METHODS: A rat model of VaD was established, and treated with QBT. Cognitive dysfunction in VaD rats was assessed using the Y-maze, new object recognition, and Morris water maze tests. Neuronal damage and inflammatory response in VaD rats were examined through Nissl staining, immunofluorescence, enzyme-linked immunospecific assay, and western blotting analysis. Furthermore, the effects of QBT on CXCL12/CXCR4 axis and its downstream signaling pathways, Janus kinase 2 (JAK2)/signal transducers and activators of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K)/protein kinase B (AKT)/nuclear factor-κB (NF-κB), were investigated in VaD rats and BV2 microglial cells exposed to oxygen glucose deprivation. RESULTS: QBT significantly alleviated cognitive dysfunction and neuronal damage in VaD rats, along with inhibition of VaD-induced over-activation of microglia and astrocytes and inflammatory response. Moreover, QBT exhibited anti-inflammatory effects by inhibiting the CXCL12/CXCR4 axis and its downstream JAK2/STAT3 and PI3K/AKT/NF-κB pathways, thereby attenuating the neuroinflammatory response both in vivo and in vitro. CONCLUSION: QBT effectively mitigated neuronal damage and cognitive dysfunction in VaD rats, exerting neuroprotective effects by suppressing neuroinflammatory response through inhibition of the CXCL12/CXCR4 axis.


Subject(s)
Cognitive Dysfunction , Dementia, Vascular , Neuroprotective Agents , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , NF-kappa B/metabolism , Neuroinflammatory Diseases , Phosphatidylinositol 3-Kinases/metabolism , Rats, Sprague-Dawley , Dementia, Vascular/drug therapy , Dementia, Vascular/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Phosphatidylinositol 3-Kinase/metabolism , Microglia , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism , Chemokine CXCL12/metabolism
9.
J Ethnopharmacol ; 326: 117988, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38428657

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Perioperative or postoperative adjuvant chemotherapy based on 5-fluorouracil (5-FU) is a common first-line adjuvant therapy for gastric cancer (GC). However, drug resistance and the side effects of 5-FU have reduced its efficacy. Among these side effects, gastrointestinal (GI) toxicity is one of the most common. Xianglian Pill (XLP) is a Chinese patent medicine that is commonly used for the treatment of diarrhoea. It can reduce inflammation and has a protective effect on the intestinal mucosa. Recent studies have shown that many components of XLP can inhibite tumor cell growth. However, the therapeutic effect of XLP in combination with 5-FU on GC is unclear. AIM OF THE STUDY: To investigate whether the combination of XLP and 5-FU can enhance anti-GC activity while reducing GI toxicity. MATERIALS AND METHODS: XLP was administered orally during intraperitoneal injection of 5-FU in GC mice model. Mice were continuously monitored for diarrhea and xenograft tumor growth. After 2 weeks, the mice were sacrificed and serum was collected to determine interleukin-6 levels. Pathological changes, the expression of pro-inflammatory factors and p38 mitogen-activated protein kinase (MAPK) in GI tissue were determined by Western blot analysis. Pathological changes, apoptosis levels and p38 MAPK expression levels in xenograft tissues were also determined. RESULTS: The results showed that XLP could alleviate GI mucosal injury caused by 5-FU, alleviated diarrhea, and inhibited the expression of nuclear factor (NF)-κB and myeloid differentiation primary response-88. Besides, XLP could promote the 5-FU-induced apoptosis of GC cells and enhance the inhibitory effect of 5-FU on tumor xenografts. Further study showed that XLP administration could regulate the expression of p38 MAPK. CONCLUSIONS: XLP in combination with 5-FU could alleviate its GI side effects and enhance its inhibitory effect on xenograft tumor. Moreover, these effects were found to be related to the regulation of the p38 MAPK/NF-κB pathway.


Subject(s)
Drugs, Chinese Herbal , Fluorouracil , Stomach Neoplasms , Humans , Mice , Animals , Fluorouracil/toxicity , Stomach Neoplasms/drug therapy , NF-kappa B/metabolism , MAP Kinase Signaling System , Diarrhea/chemically induced , Diarrhea/drug therapy , p38 Mitogen-Activated Protein Kinases/metabolism
10.
Phytother Res ; 38(4): 1815-1829, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38349045

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive and lethal clinical subtype and lacks effective targeted therapies at present. Isobavachalcone (IBC), the main active component of Psoralea corylifolia L., has potential anticancer effects. Herein, we identified IBC as a natural sirtuin 2 (SIRT2) inhibitor and characterized the potential mechanisms underlying the inhibition of TNBC. Molecular dynamics analysis, enzyme activity assay, and cellular thermal shift assay were performed to evaluate the combination of IBC and SIRT2. The therapeutic effects, mechanism, and safety of IBC were analyzed in vitro and in vivo using cellular and xenograft models. IBC effectively inhibited SIRT2 enzyme activity with an IC50 value of 0.84 ± 0.22 µM by forming hydrogen bonds with VAL233 and ALA135 within its catalytic domain. In the cellular environment, IBC bound to and stabilized SIRT2, consequently inhibiting cellular proliferation and migration, and inducing apoptosis and cell cycle arrest by disrupting the SIRT2/α-tubulin interaction and inhibiting the downstream Snail/MMP and STAT3/c-Myc pathways. In the in vivo model, 30 mg/kg IBC markedly inhibited tumor growth by targeting the SIRT2/α-tubulin interaction. Furthermore, IBC exerted its effects by inducing apoptosis in tumor tissues and was well-tolerated. IBC alleviated TNBC by targeting SIRT2 and triggering the reactive oxygen species ROS/ß-catenin/CDK2 axis. It is a promising natural lead compound for future development of SIRT2-targeting drugs.


Subject(s)
Chalcones , Sirtuin 2 , Triple Negative Breast Neoplasms , Humans , Sirtuin 2/pharmacology , Cell Line, Tumor , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Tubulin/pharmacology , Tubulin/therapeutic use , Cell Proliferation , Apoptosis
11.
Front Oncol ; 14: 1273841, 2024.
Article in English | MEDLINE | ID: mdl-38304870

ABSTRACT

Gliomas are prevalent malignant tumors in adults, which can be categorized as either localized or diffuse gliomas. Glioblastoma is the most aggressive and deadliest form of glioma. Currently, there is no complete cure, and the median survival time is less than one year. The main mechanism of regulated cell death involves organisms coordinating the elimination of damaged cells at risk of tumor transformation or cells hijacked by microorganisms for pathogen replication. This process includes apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis, necrosis, parthanayosis, entosis, lysosome-dependent death, NETosis, oxiptosis, alkaliptosis, and disulfidaptosis. The main goal of clinical oncology is to develop therapies that promote the effective elimination of cancer cells by regulating cell death are the main goal of clinical oncology. Recently, scientists have utilized pertinent regulatory factors and natural small-molecule compounds to induce regulated cell death for the treatment of gliomas. By analyzing the PubMed and Web of Science databases, this paper reviews the research progress on the regulation of cell death and the role of natural small-molecule compounds in glioma. The aim is to provide help for the treatment of glioblastoma.

12.
J Pharm Pharmacol ; 76(4): 391-404, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38289094

ABSTRACT

OBJECTIVES: Doxorubicin (DOX) is a chemotherapy drug for treating malignant tumours. However, its cardiotoxicity has limited its clinical application. The Radix Aconiti Lateralis Preparata, also known as Fuzi, has been used for treating heart failure. Nevertheless, there is still a deficiency of claeity as to whether the Fuzi polysaccharide (FPS) may prevent the side effects of DOX. METHODS: Mice were intraperitoneally administered DOX (15 mg/kg) to establish a mouse model of DOX-induced chronic cardiotoxicity (DICC). The mice were then administered different doses of FPS or enalapril intragastrically. KEY FINDINGS: In the DOX group, the activity of CK-MB and LDH and the content of NT-proBNP in serum of mice were increased. Myocardial infiltration of inflammatory cells and cytoplasmic vacuolation occurred. Levels of NLRP3, ASC, Caspase-1, IL-1ß, IL-18, IL-6, and Bax increased, whereas levels of Bcl-2, STAT3, and p-STAT3 decreased. After administering FPS (100 mg/kg and 200 mg/kg), there were reductions in CK-MB activity and NT-proBNP levels. Cytoplasmic vacuolation, interstitial infiltration of blood, and infiltration of inflammatory cells were alleviated. The changes in protein expression mentioned above were reversed. CONCLUSIONS: FPS can protect heart function and structure in DICC mice by inhibiting NLRP3 inflammasome-mediated pyroptosis and IL-6/STAT3 pathway-induced apoptosis.


Subject(s)
Aconitum , Cardiotoxicity , Diterpenes , Drugs, Chinese Herbal , Mice , Animals , Cardiotoxicity/prevention & control , NLR Family, Pyrin Domain-Containing 3 Protein , Aconitum/chemistry , Interleukin-6 , Doxorubicin/toxicity
13.
Eur J Intern Med ; 120: 46-51, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37679281

ABSTRACT

BACKGROUND: Electrocardiogram (ECG) abnormalities indicating right ventricular strain have been reported to have prognostic value in severe cases of acute pulmonary embolism (PE). We aimed to analyze the prognostic significance of other quantitative ECG parameters in non-high-risk acute PE. METHODS: Consecutive patients with non-high-risk acute PE were prospectively enrolled. The following baseline ECG parameters were collected: rhythm, heart rate, QRS axis, right bundle branch block (RBBB) pattern, S1Q3T3 pattern, T-wave inversion, ST-segment elevation, Qr in lead V1, PR Interval, QRS complex duration, QT interval, P-wave amplitude and duration, R- and S-wave amplitudes. The primary endpoint was early discharge within three days. Associations between ECG parameters and early discharge were analyzed. RESULTS: Overall, 383 patients were enrolled (median age: 67 years, 57% female): 277 (72.3%) with low-risk and 106 (27.7%) with intermediate-risk. The two groups of patients differed in several ECG signs of right ventricular strain and many other quantitative parameters like R- and S-wave amplitudes. In the multivariate logistic regression analysis, the S-wave depth in lead V5 (S-V5) was the only independent prognostic factor for early discharge (odds ratio = 0.137, 95% confidence interval = 0.031-0.613, p = 0.009). The optimum cutoff value of S-V5 for predicting early discharge derived from the receiver operative characteristic curve was 0.15 mv (c-statistic = 0.66, p =0.003). CONCLUSIONS: Several ECG signs of right ventricular strain and many other quantitative parameters were associated with disease severity in non-high-risk acute PE. An S-V5 lesser than 0.15 mv was predictive for early discharge in these patients.


Subject(s)
Electrocardiography , Pulmonary Embolism , Humans , Female , Aged , Male , Prognosis , Arrhythmias, Cardiac , Acute Disease , Pulmonary Embolism/complications
14.
Front Pharmacol ; 14: 1253013, 2023.
Article in English | MEDLINE | ID: mdl-38074148

ABSTRACT

Background: Penthorum chinense Pursh (PCP) is widely utilized in China to treat a variety of liver diseases. It has been shown that flavonoids inhibit inflammation and have the potential to attenuate tissue damage and fibrosis. However, the mechanisms underlying how total flavonoids isolated from PCP (TFPCP) exert their anti-fibrotic effects remain unclear. Methods: The chemical composition of TFPCP was determined using UHPLC-Q-Orbitrap HRMS. Subsequently, rats were randomly assigned to a control group (Control), a carbon tetrachloride (CCl4)-induced hepatic fibrosis model group (Model), a positive control group [0.2 mg/(kg∙day)] of Colchicine), and three TFPCP treatment groups [50, 100, and 150 mg/(kg∙day)]. All substances were administered by gavage and treatments lasted for 9 weeks. Simultaneously, rats were intraperitoneally injected with 10%-20% CCl4 for 9 weeks to induce liver fibrosis. At the end of the experiment, the liver ultrasound, liver histomorphological, biochemical indicators, and inflammatory cytokine levels were tested respectively. The underlying mechanisms were assessed using Western blot, immunohistochemistry, immunofluorescence, RT-qPCR, and metabolomics. Results: Fourteen flavonoids were identified in TFPCP. Compared with control animals, CCl4-treated rats demonstrated obvious liver injury and fibrosis, manifested as increases in gray values, distal diameter of portal vein (DDPV) and a decrease in blood flow velocity (VPV) in the ultrasound analysis; increased biochemical index values (serum levels of ALT, AST, TBIL, and ALP); marked increases in the contents of fibrotic markers (PC III, COL4, LN, HA) and inflammatory factors (serum TNF-α, IL-6, and IL-1ß); and significant pathological changes. However, compared with the Model group, the ultrasound parameters were significantly improved and the serum levels of inflammatory cytokines were reduced in the TFPCP group. In contrast, the expression of TGF-ß1, TLR4, and MyD88, as well as the p-P65/P65 and p-IκBα/IκBα ratios, were considerably reduced following TFPCP treatment. In addition, we identified 32 metabolites exhibiting differential abundance in the Model group. Interestingly, TFPCP treatment resulted in the restoration of the levels of 20 of these metabolites. Conclusion: Our findings indicated that TFPCP can ameliorate hepatic fibrosis by improving liver function and morphology via the inactivation of the TLR4/MyD88-mediated NF-κB pathway and the regulation of liver metabolism.

15.
Microorganisms ; 11(12)2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38138103

ABSTRACT

The abnormal proliferation of Cutibacterium acnes is the main cause of acne vulgaris. Natural antibacterial plant extracts have gained great interest due to the efficacy and safety of their use in skin care products. Bletilla striata is a common externally used traditional Chinese medicine, and several of its isolated stilbenes were reported to exhibit good antibacterial activity. In this study, the antimicrobial activity of stilbenes from B. striata (BSS) against C. acnes and its potential effect on cell membrane were elucidated by determining the minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), bacterial growth curve, adenosine triphosphate (ATP) levels, membrane potential (MP), and the expression of genes related to fatty acid biosynthesis in the cell membrane. In addition, the morphological changes in C. acnes by BSS were observed using transmission electron microscopy (TEM). Experimentally, we verified that BSS possessed significant antibacterial activity against C. acnes, with an MIC and MBC of 15.62 µg/mL and 62.5 µg/mL, respectively. The growth curve indicated that BSS at 2 MIC, MIC, 1/2 MIC, and 1/4 MIC concentrations inhibited the growth of C. acnes. TEM images demonstrated that BSS at an MIC concentration disrupted the morphological structure and cell membrane in C. acnes. Furthermore, the BSS at the 2 MIC, MIC, and 1/2 MIC concentrations caused a decrease in the intracellular ATP levels and the depolarization of the cell membrane as well as BSS at an MIC concentration inhibited the expression of fatty acid biosynthesis-associated genes. In conclusion, BSS could exert good antimicrobial activity by interfering with cell membrane in C. acnes, which have the potential to be developed as a natural antiacne additive.

16.
MedComm (2020) ; 4(6): e464, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38107057

ABSTRACT

Signal transducer and activator of transcription 4 (STAT4) is a critical transcription factor for T helper cell differentiation and tumor cells. Although its prognostic role and gene function have been reported in several carcinomas, the role of STAT4 in vitro and in vivo in breast cancer remains poorly understood. The effect of STAT4 in immunotherapy is also unclear. Therefore, we integrated bulk transcriptomics, experiments, and single-cell transcriptomics to systematically analyze its function in prognosis and signaling pathway. Several clinical breast cancer cohorts confirmed STAT4 as a T-cell relevant prognostic biomarker. Overexpressed STAT4 increased programmed cell death ligand 1 (PD-L1) and major histocompatibility complex class II levels in breast cancer cells. In molecular mechanism, transcriptional synergy between STAT4 and STAT3 transactivated interleukin (IL)-12R and involved a positive feedback loop: STAT4/IL-12R/JAK2-STAT3-STAT4, which contributed to the upregulation of PD-L1 expression. The above signaling axis was defined as the STAT4-related pathway and its score was used to predict T-cell expansion and anti-PD1 treatment response. These findings highlight a novel molecular mechanism indirectly regulating PD-L1 through the STAT4-related pathway: IL-12R/JAK2-STAT3-STAT4/PD-L1, and it has potential application in predicting anti-PD-1 immunotherapy response, which may pave the way for stratified immunotherapy in breast cancer.

17.
Eur Neurol ; 86(6): 363-376, 2023.
Article in English | MEDLINE | ID: mdl-37848007

ABSTRACT

INTRODUCTION: Many clinical studies reported the coexistence of Alzheimer's disease (AD) and multiple sclerosis (MS), but the common molecular signature between AD and MS remains elusive. The purpose of our study was to explore the genetic linkage between AD and MS through bioinformatic analysis, providing new insights into the shared signatures and possible pathogenesis of two diseases. METHODS: The common differentially expressed genes (DEGs) were determined between AD and MS from datasets obtained from Gene Expression Omnibus (GEO) database. Further, functional and pathway enrichment analysis, protein-protein interaction network construction, and identification of hub genes were carried out. The expression level of hub genes was validated in two other external AD and MS datasets. Transcription factor (TF)-gene interactions and gene-miRNA interactions were performed in NetworkAnalyst. Finally, receiver operating characteristic (ROC) curve analysis was applied to evaluate the predictive value of hub genes. RESULTS: A total of 75 common DEGs were identified between AD and MS. Functional and pathway enrichment analysis emphasized the importance of exocytosis and synaptic vesicle cycle, respectively. Six significant hub genes, including CCL2, CD44, GFAP, NEFM, STXBP1, and TCEAL6, were identified and verified as common hub genes shared by AD and MS. FOXC1 and hsa-mir-16-5p are the most common TF and miRNA in regulating hub genes, respectively. In the ROC curve analysis, all hub genes showed good efficiency in helping distinguish patients from controls. CONCLUSION: Our study first identified a common genetic signature between AD and MS, paving the road for investigating shared mechanism of AD and MS.


Subject(s)
Alzheimer Disease , MicroRNAs , Multiple Sclerosis , Humans , Alzheimer Disease/genetics , Multiple Sclerosis/genetics , MicroRNAs/genetics , Computational Biology , Databases, Factual
18.
Sci Total Environ ; 903: 166837, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37689184

ABSTRACT

The pathologies of many diseases are influenced by environmental temperature. As early as the classical Roman age, people believed that exposure to cold weather was bad for rheumatoid arthritis (RA). However, there is no direct evidence supporting this notion, and the molecular mechanisms of the effects of chronic cold exposure on RA remain unknown. Here, in a temperature-conditioned environment, we found that chronic cold exposure aggravates collagen-induced arthritis (CIA) by increasing ankle swelling, bone erosion, and cytokine levels in rats. Furthermore, in chronic cold-exposed CIA rats, gut microbiota dysbiosis was identified, including a decrease in the differential relative abundance of the families Lachnospiraceae and Ruminococcaceae. We also found that an antibiotic cocktail suppressed arthritis severity under cold conditions. Notably, the fecal microbiota transplantation (FMT) results showed that transplantation of cold-adapted microbiota partly recapitulated the microbiota signature in the respective donor rats and phenocopied the cold-induced effects on CIA rats. In addition, cold exposure disturbed bile acid profiles, in particular decreasing gut microbiota-derived taurohyodeoxycholic acid (THDCA) levels. The perturbation of bile acids was also associated with activation of the TGR5-cAMP-PKA axis and NLRP3 inflammasome. Oral THDCA supplementation mitigated the arthritis exacerbation induced by chronic cold exposure. Our findings identify an important role of aberrant gut microbiota-derived bile acids in cold exposure-related RA, highlighting potential opportunities to treat cold-related RA by manipulating the gut microbiota and/or supplementing with THDCA.

19.
Taiwan J Obstet Gynecol ; 62(5): 765-768, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37679011

ABSTRACT

OBJECTIVE: To report a rare case of anti-N-Methyl-d-aspartate receptor encephalitis (anti-NMDARE) presented by mental and behavioral changes and seizures accompanied with respiratory failure. CASE REPORT: A 37-year-old multiparous woman was initially presented with abnormal mental behavior and the diagnosis of schizophrenia was made, but the disease progressed rapidly to general convulsion and acute respiratory failure. Although active treatment, including steroids, intravenous immunoglobulins (IVIGs) and plasma exchange was applied, no significant improvement was obtained. Transvaginal ultrasound and pelvic magnetic resonance image (MRI) were arranged and the results showed a suspicious cystic lesion (3 × 2.3 cm) at the right ovary. Laparoscopic unilateral salpingo-oophorectomy was performed and final pathology reported a matured cystic teratoma, suggesting that this patient had anti-NMDARE secondary to ovarian mature teratoma. After surgery, the clinical condition was dramatically improved and she recovered completely without sequelae. CONCLUSION: Although it is well-known about the relation between anti-NMDARE and ovarian mature teratoma, this small tumor may result in the missing diagnosis. Remind us to consider the possibility of any small ovarian cystic lesion-related anti-NMDARE in women with autoimmune encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Ovarian Neoplasms , Respiratory Distress Syndrome , Teratoma , Female , Humans , Adult , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/complications , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/diagnosis , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/therapy , Teratoma/complications , Teratoma/diagnosis , Ovarian Neoplasms/complications , Ovarian Neoplasms/diagnosis
20.
Sci Immunol ; 8(87): eadf7579, 2023 09 29.
Article in English | MEDLINE | ID: mdl-37738363

ABSTRACT

Mitophagy, a central process guarding mitochondrial quality, is commonly impaired in human diseases such as Parkinson's disease, but its impact in adaptive immunity remains unclear. The differentiation and survival of memory CD8+ T cells rely on oxidative metabolism, a process that requires robust mitochondrial quality control. Here, we found that Parkinson's disease patients have a reduced frequency of CD8+ memory T cells compared with healthy donors and failed to form memory T cells upon vaccination against COVID-19, highlighting the importance of mitochondrial quality control for memory CD8+ T cell formation. We further uncovered that regulators of mitophagy, including Parkin and NIX, were up-regulated in response to interleukin-15 (IL-15) for supporting memory T cell formation. Mechanistically, Parkin suppressed VDAC1-dependent apoptosis in memory T cells. In contrast, NIX expression in T cells counteracted ferroptosis by preventing metabolic dysfunction resulting from impaired mitophagy. Together, our results indicate that the mitophagy machinery orchestrates survival and metabolic dynamics required for memory T cell formation, as well as highlight a deficit in T cell-mediated antiviral responses in Parkinson's disease patients.


Subject(s)
COVID-19 , Parkinson Disease , Humans , CD8-Positive T-Lymphocytes , Memory T Cells , Mitophagy , Cell Death
SELECTION OF CITATIONS
SEARCH DETAIL
...