Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Bull (Beijing) ; 68(18): 2094-2105, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37573249

ABSTRACT

Methyltransferase-like 8 (METTL8) encodes a mitochondria-localized METTL8-Iso1 and a nucleolus-distributed METTL8-Iso4 isoform, which differ only in their N-terminal extension (N-extension), by mRNA alternative splicing. METTL8-Iso1 generates 3-methylcytidine at position 32 (m3C32) of mitochondrial tRNAThr and tRNASer(UCN). Whether METTL8-Iso4 is an active m3C32 methyltransferase and the role of the N-extension in mitochondrial tRNA m3C32 formation remain unclear. Here, we revealed that METTL8-Iso4 was inactive in m3C32 generation due to the lack of N-extension, which contains several absolutely conserved modification-critical residues; the counterparts were likewise essential in cytoplasmic m3C32 biogenesis by methyltransferase-like 2A (METTL2A) or budding yeasts tRNA N3-methylcytidine methyltransferase (Trm140), in vitro and in vivo. Cross-compartment/species tRNA modification assays unexpectedly found that METTL8-Iso1 efficiently introduced m3C32 to several cytoplasmic or even bacterial tRNAs in vitro. m3C32 did not influence tRNAThrN6-threonylcarbamoyladenosine (t6A) modification or aminoacylation. In addition to its interaction with mitochondrial seryl-tRNA synthetase (SARS2), we further discovered an interaction between mitochondrial threonyl-tRNA synthetase (TARS2) and METTL8-Iso1. METTL8-Iso1 substantially stimulated the aminoacylation activities of SARS2 and TARS2 in vitro, suggesting a functional connection between mitochondrial tRNA modification and charging. Altogether, our results deepen the mechanistic insights into mitochondrial m3C32 biogenesis and provide a valuable route to prepare cytoplasmic/bacterial tRNAs with only a m3C32 moiety, aiding in future efforts to investigate its effects on tRNA structure and function.


Subject(s)
COVID-19 , Humans , RNA, Mitochondrial/genetics , RNA, Transfer/genetics , Protein Isoforms , Methyltransferases/genetics
2.
Nucleic Acids Res ; 50(22): 12951-12968, 2022 12 09.
Article in English | MEDLINE | ID: mdl-36503967

ABSTRACT

Mitochondrial RNA metabolism is suggested to occur in identified compartmentalized foci, i.e. mitochondrial RNA granules (MRGs). Mitochondrial aminoacyl-tRNA synthetases (mito aaRSs) catalyze tRNA charging and are key components in mitochondrial gene expression. Mutations of mito aaRSs are associated with various human disorders. However, the suborganelle distribution, interaction network and regulatory mechanism of mito aaRSs remain largely unknown. Here, we found that all mito aaRSs partly colocalize with MRG, and this colocalization is likely facilitated by tRNA-binding capacity. A fraction of human mitochondrial AlaRS (hmtAlaRS) and hmtSerRS formed a direct complex via interaction between catalytic domains in vivo. Aminoacylation activities of both hmtAlaRS and hmtSerRS were fine-tuned upon complex formation in vitro. We further established a full spectrum of interaction networks via immunoprecipitation and mass spectrometry for all mito aaRSs and discovered interactions between hmtSerRS and hmtAsnRS, between hmtSerRS and hmtTyrRS and between hmtThrRS and hmtArgRS. The activity of hmtTyrRS was also influenced by the presence of hmtSerRS. Notably, hmtSerRS utilized the same catalytic domain in mediating several interactions. Altogether, our results systematically analyzed the suborganelle localization and interaction network of mito aaRSs and discovered several mito aaRS-containing complexes, deepening our understanding of the functional and regulatory mechanisms of mito aaRSs.


Subject(s)
Amino Acyl-tRNA Synthetases , Transfer RNA Aminoacylation , Humans , Amino Acyl-tRNA Synthetases/metabolism , Cytoplasmic Ribonucleoprotein Granules/metabolism , RNA, Mitochondrial/metabolism , RNA, Transfer/metabolism
3.
Nucleic Acids Res ; 50(7): 4012-4028, 2022 04 22.
Article in English | MEDLINE | ID: mdl-35357504

ABSTRACT

METTL8 has recently been identified as the methyltransferase catalyzing 3-methylcytidine biogenesis at position 32 (m3C32) of mitochondrial tRNAs. METTL8 also potentially participates in mRNA methylation and R-loop biogenesis. How METTL8 plays multiple roles in distinct cell compartments and catalyzes mitochondrial tRNA m3C formation remain unclear. Here, we discovered that alternative mRNA splicing generated several isoforms of METTL8. One isoform (METTL8-Iso1) was targeted to mitochondria via an N-terminal pre-sequence, while another one (METTL8-Iso4) mainly localized to the nucleolus. METTL8-Iso1-mediated m3C32 modification of human mitochondrial tRNAThr (hmtRNAThr) was not reliant on t6A modification at A37 (t6A37), while that of hmtRNASer(UCN) critically depended on i6A modification at A37 (i6A37). We clarified the hmtRNAThr substrate recognition mechanism, which was obviously different from that of hmtRNASer(UCN), in terms of requiring a G35 determinant. Moreover, SARS2 (mitochondrial seryl-tRNA synthetase) interacted with METTL8-Iso1 in an RNA-independent manner and modestly accelerated m3C modification activity. We further elucidated how nonsubstrate tRNAs in human mitochondria were efficiently discriminated by METTL8-Iso1. In summary, our results established the expression pattern of METTL8, clarified the molecular basis for m3C32 modification by METTL8-Iso1 and provided the rationale for the involvement of METTL8 in tRNA modification, mRNA methylation or R-loop biogenesis.


Subject(s)
Methyltransferases/metabolism , Mitochondria/metabolism , RNA, Transfer , Alternative Splicing , Humans , Methyltransferases/genetics , Mitochondria/genetics , RNA, Messenger , RNA, Transfer/genetics , RNA, Transfer/metabolism , RNA, Transfer, Thr/genetics
4.
Nucleic Acids Res ; 49(5): 2816-2834, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33619562

ABSTRACT

GTPBP3 and MTO1 cooperatively catalyze 5-taurinomethyluridine (τm5U) biosynthesis at the 34th wobble position of mitochondrial tRNAs. Mutations in tRNAs, GTPBP3 or MTO1, causing τm5U hypomodification, lead to various diseases. However, efficient in vitro reconstitution and mechanistic study of τm5U modification have been challenging, in part due to the lack of pure and active enzymes. A previous study reported that purified human GTPBP3 (hGTPBP3) is inactive in GTP hydrolysis. Here, we identified the mature form of hGTPBP3 and showed that hGTPBP3 is an active GTPase in vitro that is critical for tRNA modification in vivo. Unexpectedly, the isolated G domain and a mutant with the N-terminal domain truncated catalyzed GTP hydrolysis to only a limited extent, exhibiting high Km values compared with that of the mature enzyme. We further described several important pathogenic mutations of hGTPBP3, associated with alterations in hGTPBP3 localization, structure and/or function in vitro and in vivo. Moreover, we discovered a novel cytoplasm-localized isoform of hGTPBP3, indicating an unknown potential noncanonical function of hGTPBP3. Together, our findings established, for the first time, the GTP hydrolysis mechanism of hGTPBP3 and laid a solid foundation for clarifying the τm5U modification mechanism and etiology of τm5U deficiency-related diseases.


Subject(s)
GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Animals , Catalytic Domain , Cytoplasm/enzymology , GTP-Binding Proteins/genetics , HEK293 Cells , Humans , Isoenzymes/chemistry , Isoenzymes/metabolism , Mitochondria/enzymology , Mitochondrial Diseases/genetics , Models, Molecular , Mutation , Protein Transport , RNA-Binding Proteins/metabolism , Sf9 Cells
5.
BMC Chem ; 13(1): 125, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31696162

ABSTRACT

In situ analysis of odor is an important approach to connect odor with chemical composition. However, it is difficult to conduct a rapid direct analysis of the odor sample because of low analyte concentration and sampling. To achieve the direct analysis, a carbon fiber ionization mass spectrometry (CFI-MS) method has been developed and applied to measure volatile components releasing from intact jujube. To build the CFI source, a 2.0-cm long carbon fiber bundle was integrated on the pin of a commercial corona discharge needle by mean of a 1.3-cm long stainless hollow tube. Odor sample driven by N2 gas can be directly introduced to the carbon fiber bundle to complete the ionization of analytes. Acetic acid, ethyl acetate, ethyl caproate, octyl acetate, and damascone present in jujube were selected to evaluate the performance of the CFI-MS method on quantitative analysis of the gaseous sample. Good lineary was obtained (R2 ≥ 0.9946) between 5.0 and 500.0 ng/L with limits of detection (LOD) ranging from 0.5 to 1.5 ng/L. Recoveries of five volatile compounds for the spiked jujube samples were between 94.36 and 106.74% with relative standard deviations (RSDs) less than 7.27% (n = 5). Jujube of different varieties can be distinguished by principal components analysis based on the analytical results of volatile compounds. The developed method demonstrated obvious advantages such as simplicity, high throughput, good sensitivity and wide range of applicability, which will be an alternative way for in situ analysis of the odor sample.

6.
PeerJ ; 7: e7576, 2019.
Article in English | MEDLINE | ID: mdl-31565561

ABSTRACT

BACKGROUND: The increasing demand for food production has resulted in the use of large quantities of chemical fertilizers. This has created major environmental problems, such as increased ammonia volatilization, N2O emission, and nitrogen (N) leaching from agricultural soil. In particular, the utilization rate of N fertilizer is low in subtropical southern parts of China due to high rainfall. This causes not only large financial losses in agriculture, but also serious environmental pollution. METHODS: In this study, 16S rDNA-based analysis and static-chamber gas chromatography were used to elucidate the effects of continuous straw biochar application on the N pool and bacteria environment in two typical soil types, purple and paddy soils, in southern China. RESULTS: Straw biochar application (1) improved the soil N pool in both rhizosphere and non-rhizosphere soils; (2) significantly reduced the emission of N2O, with no difference in emission between 1 and 2 years of application; (3) increased the abundance of N-processing bacteria in the soil and altered the bacterial community structure; and (4) improved the tobacco yield and N use efficiency in paddy soil. These findings suggest that, in southern China, the application of straw biochar can promote N transformation in purple and paddy soils and reduce the emission of the greenhouse gas N2O.

7.
Nucleic Acids Res ; 47(6): 3072-3085, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30952159

ABSTRACT

Alanyl-tRNA synthetases (AlaRSs) from three domains of life predominantly rely on a single wobble base pair, G3-U70, of tRNAAla as a major determinant. However, this base pair is divergent in human mitochondrial tRNAAla, but instead with a translocated G5-U68. How human mitochondrial AlaRS (hmtAlaRS) recognizes tRNAAla, in particular, in the acceptor stem region, remains unknown. In the present study, we found that hmtAlaRS is a monomer and recognizes mitochondrial tRNAAla in a G3-U70-independent manner, requiring several elements in the acceptor stem. In addition, we found that hmtAlaRS misactivates noncognate Gly and catalyzes strong transfer RNA (tRNA)-independent pre-transfer editing for Gly. A completely conserved residue outside of the editing active site, Arg663, likely functions as a tRNA translocation determinant to facilitate tRNA entry into the editing domain during editing. Finally, we investigated the effects of the severe infantile-onset cardiomyopathy-associated R592W mutation of hmtAlaRS on the canonical enzymatic activities of hmtAlaRS. Overall, our results provide fundamental information about tRNA recognition and deepen our understanding of translational quality control mechanisms by hmtAlaRS.


Subject(s)
Nucleic Acid Conformation , RNA, Mitochondrial/genetics , RNA, Transfer, Ala/genetics , RNA, Transfer/genetics , Alanine-tRNA Ligase/genetics , Base Pairing/genetics , Catalytic Domain , Escherichia coli/genetics , Humans , Kinetics , Models, Molecular , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...