Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(48): 30228-30233, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33199614

ABSTRACT

After centuries of striving for structural rigidity, engineers and scientists alike are increasingly looking to harness the deformation, buckling, and failure of soft materials for functionality. In fluidic devices, soft deformable components that respond to the flow have the advantage of being passive; they do not require external actuation. Harnessing flow-induced deformation for passive functionality provides a means of developing flow analogs of electronic circuit components such as fluidic diodes and capacitors. The electronic component that has so far been overlooked in the microfluidics literature-the fuse-is a passive safety device that relies on a controlled failure mechanism (melting) to protect a circuit from overcurrent. Here, we describe how a compliant Hele-Shaw cell behaves in a manner analogous to the electrical fuse; above a critical flux, the flow-induced deformation of the cell blocks the outflow, interrupting (choking) the flow. In particular, the pressure distribution within the fluid applies a spatially variant normal force to the soft boundary, which causes nonuniform deformation. As a consequence of lateral confinement and incompressibility of the soft material, this flow-induced elastic deformation manifests as bulging near the cell outflow; bulges that come into contact with the rigid cell roof interrupt the flow. We identify two nondimensional parameters that govern the central deflection and the choking of the cell, respectively. This study therefore provides the mechanical foundations for engineering passive-flow limiters into fluidic devices.

2.
Phys Rev Lett ; 111(15): 154501, 2013 Oct 11.
Article in English | MEDLINE | ID: mdl-24160604

ABSTRACT

Propagation of a viscous fluid beneath an elastic sheet is controlled by local dynamics at the peeling front, in close analogy with the capillary-driven spreading of drops over a precursor film. Here we identify propagation laws for a generic elastic peeling problem in the distinct limits of peeling by bending and peeling by pulling, and apply our results to the radial spread of a fluid blister over a thin prewetting film. For the case of small deformations relative to the sheet thickness, peeling is driven by bending, leading to radial growth as t(7/22). Experimental results reproduce both the spreading behavior and the bending wave at the front. For large deformations relative to the sheet thickness, stretching of the blister cap and the consequent tension can drive peeling either by bending or by pulling at the front, both leading to radial growth as t(3/8). In this regime, detailed predictions give excellent agreement and explanation of previous experimental measurements of spread in the pulling regime in an elastic Hele-Shaw cell.

SELECTION OF CITATIONS
SEARCH DETAIL
...