Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 919: 170780, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38340855

ABSTRACT

Contaminants of emerging concern (CECs) contained in sludge, such as carbamazepine, may be toxic to microorganisms and affect the biogenesis of methane during anaerobic digestion. In this study, different scales of anaerobic digesters were constructed to investigate the inhibitory effect of carbamazepine. Results showed that carbamazepine reduced methane production by 11.3 % and 62.1 % at concentrations of 0.4 and 2 mg/g TS, respectively. Carbamazepine hindered the dissolution of organic matter and the degradation of protein. Carbamazepine inhibited some fermentative bacteria, especially uncultured Aminicenantales, whose abundance decreased by 9.5-93.4 % under carbamazepine stress. It is worth noting that most prior studies investigated the effects of CECs only based on well-known microorganisms, ignoring the metabolisms of uncultured microorganisms. Genome-predicted metabolic potential suggested that 54 uncultured metagenome-assembled genomes (MAGs) associated with acidogenesis or acetogenesis. Therein, uncultured Aminicenantales related MAGs were proved to be acetogenic fermenters, their significant reduction may be an important reason for the decrease of methane production under carbamazepine stress. The toxicity of carbamazepine to microorganisms was mainly related to the overproduction of reactive oxygen species. This study elucidates the inhibition mechanism of carbamazepine and emphasizes the indispensable role of uncultured microorganisms in anaerobic digestion.


Subject(s)
Metagenome , Sewage , Sewage/microbiology , Anaerobiosis , Bacteria/metabolism , Methane/metabolism , Bioreactors/microbiology
2.
J Hazard Mater ; 442: 130078, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36303343

ABSTRACT

Microplastics (MPs) are substrates available for biofilms colonization in natural water environments. The biofilms formation may enhance the ability of MPs to adsorb harmful contaminants. Herein, we investigated the biofilms formation of three different MPs (PVC, PA and HDPE) in simulated natural environment, and observed the chemical structure, charge property, hydrophobicity and other properties of MPs affect microbial biomass and community composition. More importantly, potential pathogens were found in all three MPs biofilms. Furthermore, the adsorption capacities of original MPs and biological aging MPs for norfloxacin (NOR) was compared. HDPE has the largest adsorption capacity for NOR, while PA has the smallest adsorption capacity for NOR. It was concluded that the formation of biofilms enhanced the adsorption of NOR by 50.60 %, 24.17 % and 46.02 % for PVC, PA and HDPE, respectively. In addition, hydrogen-bond interaction, electrostatic interaction and hydrophobic interaction were found to dominate the adsorption of NOR by MPs. Our study contributed to improve the understanding of the interactions between aging MPs and contaminants in the natural water environments, and provided essential information for ecological risk assessment of MPs.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/chemistry , Adsorption , Anti-Bacterial Agents , Polyethylene/chemistry , Polyvinyl Chloride , Water Pollutants, Chemical/analysis , Biofilms , Water , Fresh Water
3.
J Hazard Mater ; 432: 128684, 2022 06 15.
Article in English | MEDLINE | ID: mdl-35303663

ABSTRACT

Environmental pollution has drawn forth advanced materials and progressive techniques concentrating on sustainable development. Metal-organic frameworks (MOFs) have aroused vast interest resulting from their excellent property in structure and function. Conversely, powdery MOFs in highly crystalline follow with fragility, poor processability and recoverability. Aerogels distinguished by the unique three-dimensional (3D) interconnected pore structures with high porosity and accessible surface area are promising carriers for MOFs. Given these, combining MOFs with aerogels at molecule level to obtain advanced composites is excepted to further enhance their performance with higher practicability. Herein, we focus on the latest studies on the MOFs@aerogel composites. The construction of MOFs@aerogel with different synthetic routes and drying methods are discussed. To explore the connection between structure and performance, pore structure engineering and quantitation of MOFs content are outlined. Furthermore, various types of MOFs@aerogel composites and their carbonized derivatives are reviewed, as well as the applications of MOFs@aerogel for environmental remediation referring to water purification and air clearing. More importantly, outlooks towards these emerging advanced composites have been presented from the perspective of practical application and future development.


Subject(s)
Environmental Restoration and Remediation , Metal-Organic Frameworks , Water Purification , Metal-Organic Frameworks/chemistry , Porosity , Water Purification/methods
4.
J Hazard Mater ; 424(Pt C): 127503, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34736183

ABSTRACT

The application of traditional powder catalysts is limited by particle agglomeration and difficult recovery. In this work, a three-dimensional porous aerogel catalyst for organic pollutants degradation in water by activating peroxydisulfate (PDS) was successfully synthesized, which was obtained via directly mixing of MIL-88B(Fe) with sol precursors followed by vacuum freeze-drying and low-temperature calcination. MIL-88B(Fe)/gelatin aerogel-150/PDS (MGA-150/PDS) system displayed satisfactory norfloxacin (NOR) degradation performance, which could remove 98.7% of NOR in 90 min. Its reaction rate constant was 23.2 times higher than the gelatin aerogel/PDS (GA/PDS) system. In addition, Electron paramagnetic resonance (EPR) results and radical trapping experiments revealed both radicals (SO4•-, •OH) and non-radical (1O2) pathways had participated in NOR degradation, of which •OH was dominant. Possible degradation pathways were proposed. Moreover, the high degradation efficiency of NOR by MGA-150 composites could still be reached more than 90.0% even after 10 cycles, and the morphology and chemical structure of MGA-150 composites exhibited no significant changes, indicating the arrestive stability of aerogel composites. This progress not only proposed an effective catalyst for PDS activation, but also expanded views for the design and development of 3D functional materials.


Subject(s)
Gelatin , Norfloxacin , Catalysis
5.
J Hazard Mater ; 424(Pt B): 127286, 2022 02 15.
Article in English | MEDLINE | ID: mdl-34879504

ABSTRACT

The excellent properties of plastics make them widely used all over the world. However, when plastics enter the environmental medium, microplastics will inevitably be produced due to physical, chemical and biological factors. Studies have shown that microplastics have been detected in terrestrial, aquatic and atmospheric environments. In addition, the presence of microplastics will provide a new artificial adhesion substrate for biofilms. It has been proved that the formation of biofilms could significantly change some properties of microplastics. Some studies have found that microplastics attached with biofilms have higher environmental risks and eco-toxicity. Therefore, considering the widespread existence of microplastics and the ecological risks of microplastic biofilms, the physical and chemical properties of biofilms on microplastics and their impact on microplastics in aqueous environment are worth reviewing. In this paper, we comprehensively reviewed representative studies in this area. Firstly, this study reviews that the existence of biofilms could change the transport and deposition of microplastics. Subsequently, the presence of biofilms would enhance the ability of microplastics to accumulate pollutant, such as persistent organic pollutants, heavy metals and antibiotics. Moreover, the effect of biofilms on microplastics enrichment of harmful microorganisms is summarized. Finally, some future research needs and strategies are proposed to better understand the problem of biofilms on microplastics.


Subject(s)
Microplastics , Water Pollutants, Chemical , Biofilms , Environmental Monitoring , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
J Hazard Mater ; 402: 123498, 2021 01 15.
Article in English | MEDLINE | ID: mdl-32712366

ABSTRACT

N-doped nanoporous carbon (NC) with two-dimensional structure derived from Zn-ZIF-L via KCl exfoliation and carbonization at different temperature were prepared for adsorptive removal of tetracycline (TC). Characterizations revealed the effective dopant of N atoms and low degree of graphitization with more defects related to the enhanced adsorption capacity of the NC materials. Benefiting from the huge surface area (2195.57 m2 g-1), high porosity (1.34 cm3 g-1) and accessible sheeting structure, the NC-800 exhibited its fast and efficient adsorption of TC in 60 min. Meantime, the maximum adsorption of TC could reach 347.06 mg g-1. Effects of pH, humic acid (HA) and ionic strength (Na+, Ca2+) were studied along with the interactions among influencing factors investigated by response surface model (RSM). By optimizing experimental conditions from RSM, the adsorption capacity could increase to 427.41 mg g-1. Additionally, electrostatic interaction and hydrogen bond interaction might play a dominating role in adsorption reaction. The NC-800 could maintain a high adsorption level after four cycles. Therefore, the NC-800 with great adsorptive property and reusability could be considered as an effective adsorbent with promising potential in applications for water treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...