Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Biofabrication ; 16(3)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38569493

ABSTRACT

With the advent of personalized medicine, the drug delivery system will be changed significantly. The development of personalized medicine needs the support of many technologies, among which three-dimensional printing (3DP) technology is a novel formulation-preparing process that creates 3D objects by depositing printing materials layer-by-layer based on the computer-aided design method. Compared with traditional pharmaceutical processes, 3DP produces complex drug combinations, personalized dosage, and flexible shape and structure of dosage forms (DFs) on demand. In the future, personalized 3DP drugs may supplement and even replace their traditional counterpart. We systematically introduce the applications of 3DP technologies in the pharmaceutical industry and summarize the virtues and shortcomings of each technique. The release behaviors and control mechanisms of the pharmaceutical DFs with desired structures are also analyzed. Finally, the benefits, challenges, and prospects of 3DP technology to the pharmaceutical industry are discussed.


Subject(s)
Drug Delivery Systems , Precision Medicine , Precision Medicine/methods , Printing, Three-Dimensional , Pharmaceutical Preparations , Computer-Aided Design
2.
J Neuroinflammation ; 21(1): 10, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178152

ABSTRACT

Myasthenia gravis is an autoimmune disease characterized by pathogenic antibodies that target structures of the neuromuscular junction. However, some patients also experience autonomic dysfunction, anxiety, depression, and other neurological symptoms, suggesting the complex nature of the neurological manifestations. With the aim of explaining the symptoms related to the central nervous system, we utilized a rat model to investigate the impact of dopamine signaling in the central nervous and peripheral circulation. We adopted several screening methods, including western blot, quantitative PCR, mass spectrum technique, immunohistochemistry, immunofluorescence staining, and flow cytometry. In this study, we observed increased and activated dopamine signaling in both the central nervous system and peripheral circulation of myasthenia gravis rats. Furthermore, changes in the expression of two key molecules, Claudin5 and CD31, in endothelial cells of the blood-brain barrier were also examined in these rats. We also confirmed that dopamine incubation reduced the expression of ZO1, Claudin5, and CD31 in endothelial cells by inhibiting the Wnt/ß-catenin signaling pathway. Overall, this study provides novel evidence suggesting that pathologically elevated dopamine in both the central nervous and peripheral circulation of myasthenia gravis rats impair brain-blood barrier integrity by inhibiting junction protein expression in brain microvascular endothelial cells through the Wnt/ß-catenin pathway.


Subject(s)
Dopamine , Myasthenia Gravis , Humans , Rats , Animals , Dopamine/metabolism , Endothelial Cells/metabolism , Brain , Blood-Brain Barrier/metabolism , Wnt Signaling Pathway/physiology , Myasthenia Gravis/metabolism
3.
J Control Release ; 365: 583-601, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38048963

ABSTRACT

The complex etiologies and mechanisms of Alzheimer's disease (AD) underscore the importance for devising multitarget drugs to achieve effective therapy. MicroRNAs (miRNAs) are capable of concurrently regulating the expression of multiple proteins by selectively targeting disease- associated genes in a sequence-specific fashion. Nonetheless, as RNA-based drugs, their stability in the circulation and capacity of traversing the blood-brain barrier (BBB) is largely compromised, thereby limiting their potential clinical applications. In this study, we formulated the nanoliposomes encapsulating polyethyleneimine (PEI)/miR-195 complex (DPMT@PEI/miR-195) that was engineered through dual modifications to contain P-aminophenyl-alpha-d-mannopyranoside (MAN) and cationic cell-penetrating peptide (TAT). DPMT@PEI/miR-195 exhibited the enhanced BBB- and cell membrane penetrating capability. As expected, we observed that DPMT@PEI/miR-195 administered through intravenous tail injection of produced greater effectiveness than donepezil and the same range of effect as aducanumab in alleviating the cognitive decline in 7-month-old APP/PS1 mice. Moreover, the combination treatment with DPMT@PEI/miR-195 and donepezil effectively ameliorated the deterioration of cognition in 16-month-old APP/PS1 mice, with enhanced effects than either DPMT@PEI/miR-195 or donepezil alone. Furthermore, DPMT@PEI/miR-195 effectively attenuated the positive signals of Aß, AT8, and CD68 in APP/PS1 mice without notable side effects. Our findings indicate DPMT@PEI/miR-195 as a promising potentially new agent or approach for the prophylaxis and treatment of early and advanced stages of Alzheimer's disease.


Subject(s)
Alzheimer Disease , MicroRNAs , Humans , Mice , Animals , Infant , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Liposomes/therapeutic use , Amyloid beta-Protein Precursor/metabolism , Donepezil/therapeutic use , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/therapeutic use , MicroRNAs/metabolism , Disease Models, Animal , Amyloid beta-Peptides/metabolism
4.
Molecules ; 28(22)2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38005286

ABSTRACT

Apigenin (API) possesses excellent antitumor properties but its limited water solubility and low bioavailability restrict its therapeutic impact. Thus, a suitable delivery system is needed to overcome these limitations and improve the therapeutic efficiency. Poly (lactic-co-glycolic acid) (PLGA) is a copolymer extensively utilized in drug delivery. Hyaluronic acid (HA) is a major extracellular matrix component and can specifically bind to CD44 on colon cancer cells. Herein, we aimed to prepare receptor-selective HA-coated PLGA nanoparticles (HA-PLGA-API-NPs) for colon cancers with high expression of CD44; chitosan (CS) was introduced into the system as an intermediate, simultaneously binding HA and PLGA through electrostatic interaction to facilitate a tighter connection between them. API was encapsulated in PLGA to obtain PLGA-API-NPs, which were then sequentially coated with CS and HA to form HA-PLGA-API-NPs. HA-PLGA-API-NPs had a stronger sustained-release capability. The cellular uptake of HA-PLGA-API-NPs was enhanced in HT-29 cells with high expression of CD44. In vivo, HA-PLGA-API-NPs showed enhanced targeting specificity towards the HT-29 ectopic tumor model in nude mice in comparison with PLGA-API-NPs. Overall, HA-PLGA-API-NPs were an effective drug delivery platform for API in the treatment of colon cancers with high expression of CD44.


Subject(s)
Colonic Neoplasms , Nanoparticles , Animals , Mice , Hyaluronic Acid/chemistry , Apigenin/pharmacology , Mice, Nude , Nanoparticles/chemistry , Colonic Neoplasms/drug therapy , Drug Carriers , Cell Line, Tumor
5.
PLoS One ; 18(9): e0291469, 2023.
Article in English | MEDLINE | ID: mdl-37699016

ABSTRACT

Myocardial fibrosis can lead to ischemic damage of the myocardium, which can be life-threatening in severe cases. Cardiac fibroblast (CF) transdifferentiation is an important process in myocardial fibrosis. Fucoxanthin (FX) plays a key role in ameliorating myocardial fibrosis; however, its mechanism of action is not fully understood. This study investigated the role of FX in the angiotensin II (Ang II)-induced transdifferentiation of CFs and its potential mechanisms of action. We found that FX inhibited Ang II-induced transdifferentiation of CFs. Simultaneously, FX downregulated bromodomain-containing protein 4 (BRD4) expression in CFs and increased nuclear expression of nuclear factorerythroid 2-related factor 2 (Nrf2). FX reverses AngII-induced inhibition of the Keap1/Nrf2/HO-1 pathway and elevates the level of reactive oxygen species (ROS). FX failed to reverse Ang II-induced changes in fibrosis-associated proteins and ROS levels after Nrf2 silencing. BRD4 silencing reversed the inhibitory effect of Ang II on the Keap1/Nrf2/HO-1 antioxidant signalling pathway. In conclusion, we demonstrated that FX inhibited Ang II-induced transdifferentiation of CFs and that this effect may be related to the activation of the Keap1/Nrf2/HO-1 pathway by reducing BRD4 expression and, ultimately, oxidative stress.


Subject(s)
Cell Transdifferentiation , Nuclear Proteins , Angiotensin II/pharmacology , Down-Regulation , Fibroblasts , Kelch-Like ECH-Associated Protein 1/genetics , NF-E2-Related Factor 2/genetics , NFI Transcription Factors , Nuclear Proteins/genetics , Oxidative Stress , Reactive Oxygen Species , Animals , Rats
6.
Expert Opin Drug Deliv ; 20(10): 1349-1369, 2023.
Article in English | MEDLINE | ID: mdl-37450427

ABSTRACT

INTRODUCTION: Rapid advances in bioengineering enable the use of complex proteins as therapeutic agents to treat diseases. Compared with conventional small molecule drugs, proteins have multiple advantages, including high bioactivity and specificity with low toxicity. Developing oral dosage forms with active proteins is a route to improve patient compliance and significantly reduce production costs. However, the gastrointestinal environment remains a challenge to this delivery path due to enzymatic degradation, low permeability, and weak absorption, leading to reduced delivery efficiency and poor clinical outcomes. AREAS COVERED: This review describes the barriers to oral delivery of peptides and complex proteins, current oral delivery strategies utilized and the opportunities and challenges ahead to try and circumvent these barriers. Oral protein drugs on the market and clinical trials provide insights and approaches for advancing delivery strategies. EXPERT OPINION: Although most current studies on oral protein delivery rely on in vitro and in vivo animal data, the safety and limitations of the approach in humans remain uncertain. The shortage of clinical data limits the development of new or alternative strategies. Therefore, designing appropriate oral delivery strategies remains a significant challenge and requires new ideas, innovative design strategies and novel model systems.


Subject(s)
Drug Delivery Systems , Proteins , Animals , Humans , Administration, Oral , Proteins/adverse effects , Peptides
7.
Eur J Pharm Biopharm ; 179: 206-220, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36150614

ABSTRACT

Hepatocellular carcinoma (HCC) is a most common primary liver cancer among the most deadly malignancies. Selectively killing the cancer cells within the liver urgently requires the novel treatment strategies. The combination of sonodynamic therapy (SDT) and chemotherapy based on the nanotechnology have achieved some achievements in the HCC treatments. However, off-targeting drug delivery to healthy cells and the hypoxic microenvironment in the solid tumors frustrate the efforts to the combined strategy. The hypoxic microenvironment restrains the generation of ROS, leading to the decreased effects of SDT. To improve the clinical outcomes of chemo/SDT strategy, we created a novel oxygen self-enriched active targeted nanovesicle (ICG-DOX NPs/PFH@SP94-Lip). SP94 peptide could enhance the selectivity of the nanovesicles to liver tumor cells rather than normal liver cells. Besides, an oxygen carrier, perfluorohexanes (PFH), was co-loaded into liposomes to increase the oxygen level in tumor tissue, thus improving the effects of SDT. The in vivo studies showed that the ICG-DOX NPs/PFH@SP94-Lip combined with the external US stimulation significantly inhibited effects on tumor growth. Therefore, this novel oxygen self-enriched chemo/SDT nanocomposites represents a proof-of-concept liver tumor treatment strategy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Nanoparticles , Ultrasonic Therapy , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Humans , Liposomes , Liver Neoplasms/drug therapy , Liver Neoplasms/pathology , Oxygen , Peptides/therapeutic use , Reactive Oxygen Species , Tumor Microenvironment
8.
J Drug Target ; 30(2): 208-218, 2022 02.
Article in English | MEDLINE | ID: mdl-34236257

ABSTRACT

Ferroptosis is a regulated cell death pathway which depends on iron. Ferroptosis can be induced by limiting intracellular glutathione (GSH) synthesis, or inhibiting the activity of GPX4, or increasing intracellular accumulation of PE-AA-OOH, all of which involve NADPH. Therefore, NADPH depletion, excessive PE-AA-OOH, and GPX4 deficiency are generally considered to be the main characteristics of ferroptosis. In this research, the novel self-assembly nanomicelles modified by maltose ligand (Malt-PEG-Abz@RSL3) with superior nano characteristics were designed and fabricated. Malt-PEG-Abz@RSL3 micelles achieved active targeted drug delivery due to the high expression of glucose transporter (GLUT) and high uptake by HepG2 cells. Maltose-polyethylene glycol broke to release RSL3 for inhibiting GPX4 activity when Malt-PEG-Abz@RSL3 micelles entered the cells. Meanwhile, key coenzyme NADPH that participated in synthesis of GSH and Trx(SH)2 was depleted by azobenzene moiety, resulting in decreasing GSH and Trx(SH)2, which dually induced ferroptosis in tumour cells and promoted cell apoptosis.


Subject(s)
Ferroptosis , Carbolines , Hep G2 Cells , Humans , Micelles , NADP
9.
Chem Soc Rev ; 50(22): 12679-12701, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34636824

ABSTRACT

The past few decades have seen emerging growth in the field of soft materials for synthetic biology. This review focuses on soft materials involved in biological and artificial membranes. The biological membranes discussed here are mainly those involved in the structure and function of cells and organelles. As building blocks in medicine, non-native membranes including nanocarriers (NCs), especially liposomes and DQAsomes, and polymeric membranes for scaffolds are constructed from amphiphilic combinations of lipids, proteins, and carbohydrates. Artificial membranes can be prepared using synthetic, soft materials and molecules and then incorporated into structures through self-organization to form micelles or niosomes. The modification of artificial membranes can be realized using traditional chemical methods such as click reactions to target the delivery of NCs and control the release of therapeutics. The biomembrane, a lamellar structure inlaid with ion channels, receptors, lipid rafts, enzymes, and other functional units, separates cells and organelles from the environment. An active domain inserted into the membrane and organelles for energy conversion and cellular communication can target disease by changing the membrane's composition, structure, and fluidity and affecting the on/off status of the membrane gates. The biological membrane targets analyzing pathological mechanisms and curing complex diseases, which inspires us to create NCs with artificial membranes.


Subject(s)
Lipid Bilayers , Membranes, Artificial , Cell Membrane , Liposomes , Polymers
10.
Drug Deliv ; 28(1): 1903-1914, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34519602

ABSTRACT

A novel tumor-targeted glutathione responsive Glycosylated-Camptothecin nanosupramolecular prodrug (CPT-GL NSp) was designed and fabricated via a disulfide bond. The effects of glycoligand with different polarities on solubility, self-assembly, stability, cellular uptake, and glutathione responsive cleaving were explored, and an optimal glycosylated ligand was selected for nanosupramolecular prodrug. It has been found that CPT-GL NSp exhibited higher drug loading than traditional nanoparticles. Among of which maltose modified NSp had the strongest anti-tumor effects than that of glucose and maltotriose. CPT-SS-Maltose had a similar anti-tumor ability to Irinotecan (IR), but the superior performance in solubility, hemolysis, and uptake of HepG2 cells.


Subject(s)
Antineoplastic Agents, Phytogenic/administration & dosage , Camptothecin/administration & dosage , Nanoparticles/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Camptothecin/chemistry , Camptothecin/pharmacology , Cell Cycle/drug effects , Chemistry, Pharmaceutical/methods , Drug Carriers/chemistry , Drug Liberation , Drug Stability , Glucose/chemistry , Glutathione/chemistry , Hemolysis/drug effects , Hep G2 Cells , Humans , Prodrugs , Trisaccharides/chemistry
11.
Nanoscale ; 13(24): 10748-10764, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-34132312

ABSTRACT

The rapid development of drug nanocarriers has benefited from the surface hydrophilic polymers of particles, which has improved the pharmacokinetics of the drugs. Polyethylene glycol (PEG) is a kind of polymeric material with unique hydrophilicity and electrical neutrality. PEG coating is a crucial factor to improve the biophysical and chemical properties of nanoparticles and is widely studied. Protein adherence and macrophage removal are effectively relieved due to the existence of PEG on the particles. This review discusses the PEGylation methods of nanoparticles and related techniques that have been used to detect the PEG coverage density and thickness on the surface of the nanoparticles in recent years. The molecular weight (MW) and coverage density of the PEG coating on the surface of nanoparticles are then described to explain the effects on the biophysical and chemical properties of nanoparticles.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Drug Carriers , Drug Delivery Systems , Polyethylene Glycols , Polymers
12.
J Drug Target ; 29(8): 863-874, 2021 09.
Article in English | MEDLINE | ID: mdl-33507113

ABSTRACT

Liposomes are among the most extensively applied drug carriers due to their excellent biocompatibility, controllable size and ease of modification. In the present study, we prepared untargeted liposomes (LP) and targeting liposomes modified with Arg-Gly-Asp (RGD-LP), and Doxorubicin Hydrochloride (DOX) or fluorescent probe was loaded. RGD-LP/DOX was identified to be uniformly spherical in size 131.2 ± 2.7 nm. Based on flow cytometry analysis and the confocal laser scanning microscopy, RGD-LP had a higher uptake into HRT-18 colorectal cancer cells than LP. Further, in vivo imaging study further suggested that RGD-LP could significantly increase the liposome accumulation in the tumour tissues of the mice bearing subcutaneous tumours. By investigating the targeting mechanism of RGD-LP, we found that they entered the cell via macropinocytosis. When loaded with DOX, RGD-LP exerted stronger tumour growth inhibitory activity against tumours of colorectal carcinoma compared to LP. Moreover, RGD-LP induced autophagy. Therefore, RGD-LP have the potential to be applied as a targeted colorectal carcinoma therapy.


Subject(s)
Autophagy/drug effects , Colorectal Neoplasms/drug therapy , Liposomes/administration & dosage , Oligopeptides/administration & dosage , Animals , Cell Line, Tumor , Doxorubicin/administration & dosage , Drug Carriers/chemistry , Drug Delivery Systems/methods , Humans , Mice , Mice, Nude
13.
Front Mol Biosci ; 8: 784288, 2021.
Article in English | MEDLINE | ID: mdl-35242810

ABSTRACT

Studies of key metabolite variations and their biological mechanisms in cerebral infarction (CI) have increased our understanding of the pathophysiology of the disease. However, how metabolite variations in different periods of CI influence these biological processes and whether key metabolites from different periods may better predict disease progression are still unknown. We performed a systematic investigation using the metabonomics method. Various metabolites in different pathways were investigated by serum metabolic profiling of 143 patients diagnosed with CI and 59 healthy controls. Phe-Phe, carnitine C18:1, palmitic acid, cis-8,11,14-eicosatrienoic acid, palmitoleic acid, 1-linoleoyl-rac-glycerol, MAG 18:1, MAG 20:3, phosphoric acid, 5α-dihydrotestosterone, Ca, K, and GGT were the major components in the early period of CI. GCDCA, glycocholate, PC 36:5, LPC 18:2, and PA showed obvious changes in the intermediate time. In contrast, trans-vaccenic acid, linolenic acid, linoleic acid, all-cis-4,7,10,13,16-docosapentaenoic acid, arachidonic acid, DHA, FFA 18:1, FFA 18:2, FFA 18:3, FFA 20:4, FFA 22:6, PC 34:1, PC 36:3, PC 38:4, ALP, and Crea displayed changes in the later time. More importantly, we found that phenylalanine metabolism, medium-chain acylcarnitines, long-chain acylcarnitines, choline, DHEA, LPC 18:0, LPC 18:1, FFA 18:0, FFA 22:4, TG, ALB, IDBIL, and DBIL played vital roles in the development of different periods of CI. Increased phenylacetyl-L-glutamine was detected and may be a biomarker for CI. It was of great significance that we identified key metabolic pathways and risk metabolites in different periods of CI different from those previously reported. Specific data are detailed in the Conclusion section. In addition, we also explored metabolite differences of CI patients complicated with high blood glucose compared with healthy controls. Further work in this area may inform personalized treatment approaches in clinical practice for CI by experimentally elucidating the pathophysiological mechanisms.

14.
Mater Sci Eng C Mater Biol Appl ; 118: 111527, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33255080

ABSTRACT

A novel nanodrug delivery system (NDDS) based on block copolymers of Poly(DEA)-block-Poly(PgMA) (PDPP) was developed to enhance in vitro cellular uptake and anticancer efficacy. pH-responsive doxorubicin (DOX) based small molecule prodrug (DOX-hyd-N3) and mPEG-N3 were co-conjugated onto PDPP via copper-catalyzed "Click chemistry" to give a dual pH-responsive polymeric prodrug (mPEG-g-PDPP-g-hyd-DOX), which could be self-assembled into core-shell polymeric micelles (M(DOX)) with particles size of 81 ± 1 nm in aqueous phase. Additionally, the pH-responsive charge-reversal, stability and drug release behaviour at different pHs were then evaluated. Moreover, the surface charge of M(DOX) could quickly convert from negative (-6.64 ± 3.37 mV) to positive (5.35 ± 1.33 mV) thanks to the protonation of Poly(DEA) moieties as the pH value decreased from 7.4 during blood circulation to 6.5 in extracellular of tumour tissues. Meanwhile, according to the cytotoxicity determined by CCK-8 assay, cellular uptake, flow-cytometric and apoptosis profiles of two human cancer cell lines (HeLa and SW480), we could draw the conclusion that the cellular uptake and anticancer efficacy were significantly enhanced when cells were incubated with micelles at pH 6.5 due to the charge-reversal of micelles from negative to positive. With the protonation of Poly(DEA) moieties in acidic extracellular microenvironment and the pH-responsive DOX release with hydrazone linkage in endo/lysosome pH, this dual pH-responsive-charge-reversal micelle platform might become an encouraging strategy for more effective cancer treatment.


Subject(s)
Doxorubicin , Micelles , Doxorubicin/pharmacology , Drug Carriers , Drug Liberation , Humans , Hydrogen-Ion Concentration , Polymers
15.
J Mater Chem B ; 8(45): 10384-10391, 2020 12 07.
Article in English | MEDLINE | ID: mdl-33112352

ABSTRACT

Acute and persistent myocardial ischemia is the main cause of acute myocardial infarction (AMI) and heart failure. MicroRNA-21(miR-21) contributes to the pathophysiological consequences of acute myocardial infarction by targeting downstream crucial regulators. Thus, miR-21 mimics are a promising strategy for the treatment of AMI. However, their poor stability and insufficient cellular uptake are the major challenges. Herein, we encapsulated miR-21 mimics into liposomes modified with the cardiac troponin T (cTnT) antibody for targeted delivery of miR-21(cT-21-LIPs) to the ischemic myocardium. The cT-21-LIPs exhibited enhanced targeting efficiency to hypoxia primary cardiomyocytes in vitro and improved accumulation in the ischemic heart of AMI rats after injection via the tail vein due to the specifical target to overexpressed troponin. The cT-21-LIPs could significantly improve the cardiac function and decrease the infarct size after AMI, while maintaining the viability of cardiomyocytes. This design provides a novel strategy for delivering small nucleotide drugs specifically to the infarcted heart, which may find great potential in clinics.


Subject(s)
Genetic Therapy , Liposomes/metabolism , MicroRNAs/therapeutic use , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Animals , Cells, Cultured , Drug Delivery Systems , Gene Transfer Techniques , Male , MicroRNAs/administration & dosage , MicroRNAs/genetics , Myocardial Infarction/metabolism , Rats, Wistar , Troponin T/metabolism
16.
Eur J Pharm Biopharm ; 156: 143-154, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32937179

ABSTRACT

Diabetic nephropathy (DN) is a frequent and severe microvascular complication associated with oxidative stress of diabetes mellitus. A novel astaxanthin-based natural antioxidant nanosystem, namely AST-GLU-LIP, with preferential renal uptake and bioavailability were prepared and applied for treatment of diabetic nephropathy in rats. Our results of kidney-targeted evaluation showed that glucose-PEG600-DSPE ligand modified AST liposomes could be specifically transported by overexpressed GLUT1 on the membrane of glomerular mesangial cells and achieved excellent kidney-targeted drug delivery. In addition, the results of pharmacodynamics and therapeutics in DN rats demonstrated that AST-GLU-LIP could improve the bioavailability and antioxidant capacity of AST to scavenge redundant ROS induced by oxidative stress. AST-GLU-LIP could also significantly improve the renal pathological morphology to protect the kidney as a therapeutic drug for diabetic nephropathy.


Subject(s)
Antioxidants/administration & dosage , Diabetic Nephropathies/drug therapy , Nanoparticles/administration & dosage , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Cell Survival/drug effects , Cell Survival/physiology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Mesangial Cells/drug effects , Mesangial Cells/metabolism , Mesangial Cells/pathology , Nanoparticles/metabolism , Oxidative Stress/physiology , Rats , Xanthophylls/administration & dosage , Xanthophylls/metabolism
17.
Int J Pharm ; 587: 119679, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32717283

ABSTRACT

The management and treatment of kidney diseases currently have caused a huge global burden. Although the application of nanotechnology for the therapy of kidney diseases is still at an early stages, it has profound potential of development. More and more nano-based drug delivery systems provide novel solutions for the treatment of kidney diseases. This article summarizes the physiological and anatomical properties of the kidney and the biological and physicochemical characters of drug delivery systems, which affects the ability of drug to target the kidney, and highlights the prospects, opportunities, and challenges of nanotechnology in the therapy of kidney diseases.


Subject(s)
Nanoparticles , Pharmaceutical Preparations , Drug Delivery Systems , Kidney , Nanomedicine , Nanotechnology
18.
J Pharm Sci ; 109(9): 2861-2873, 2020 09.
Article in English | MEDLINE | ID: mdl-32534027

ABSTRACT

Glioma is one of the fatal intracranial cancers that is a huge challenge to decrease the death rate currently. The deep penetration and high accumulation of therapeutic inorganic ions into the tumor site are extremely impeded due to the existence of physiological barriers, which limits to widen the indication of some drugs such as arsenic trioxide. The previous data have confirmed that the mannose substrate (MAN) without acetyl groups facilitates vesicles to go into the brain. Given that deacetylation of Ac4MAN groups on the surface of liposomes under the enzyme incubation occurred, namely 'prodrug-like' features of vesicles, the liposomes could more easily penetrate the BBB, target the glioma site, release arsenic trioxide, and inhibit the growth of glioma cells in the brain. Besides, the possibility of Ac4MAN binding to Gluts could be reduced due to the steric hindrance of acetyl groups, decreasing the off-target effects of vesicles. Here, we developed 'prodrug-like' arsenic trioxide (As2O3, ATO)-loaded liposomes inserted with distearoyl phospho-ethanolamine-polyethylene glycol-1000-p-carboxylpheny-α-d-acetylmannosamine (DSPE-PEG-1000-Ac4MAN), which was named Ac4MAN-ATO-LIP. Cytotoxic experiments of liposomes indicated that the toxicity of Ac4MAN-ATO-LIP was lower than that of free ATO but stronger than that of ATO-LIP (without insertion of DSPE-PEG-1000-Ac4MAN). The uptake of vesicles by U87 glioma cells displayed that the cellular uptake of Ac4MAN-Rho-LIP (labeled by rhodamine) was remarkably improved, compared with Rho-LIP. The in vivo biodistribution results showed the superiority of Ac4MAN-Rho-LIP in enhanced intracranial accumulation. Furthermore, the treatment of orthotopic glioma in Balb/c nude mice with Ac4MAN-ATO-LIP elongated the survival time of the animals than that with physiological saline, free ATO, or ATO-LIP, respectively. All the results suggested that the Ac4MAN-ATO-LIP had stronger anti-glioma effects as well as lower toxicities, and may be a promising approach for the treatment of brain cancer.


Subject(s)
Antineoplastic Agents , Glioma , Prodrugs , Animals , Antineoplastic Agents/therapeutic use , Arsenic Trioxide/therapeutic use , Cell Line, Tumor , Glioma/drug therapy , Liposomes , Mice , Mice, Nude , Prodrugs/therapeutic use , Tissue Distribution
19.
J Drug Target ; 28(7-8): 789-801, 2020.
Article in English | MEDLINE | ID: mdl-32242754

ABSTRACT

Ligands are an important part of targeted drug delivery systems. Optimised lignads not only improve the target efficiency, but also enhance therapeutical effect of drugs. In our research, five sugar molecules (Mannose, Galactose, Glucose, Malt disaccharide, and Maltotriose) conjugated PEG600-DSPE were synthesised, of which polysaccharides were first discovered by us as sugar ligands to modify liposomes, which interacts with over expressive GLUT on cancer cells. DiO was encapsulated as fluorescent probe to evaluate their cellular uptake abilities of targeting C6 glioma cells, and the distribution in different visceral organs of rats. The results demonstrated that Malt disaccharide and Glucose-PEG600-DSPE had the strong efficiency of cellular uptake by C6 glioma cells. The distribution and accumulation of liposomes showed that different sugars modified liposomes could target different visceral organs in rats. It has provided a novel idea for ligand selectivity and optimisation of nanocarriers for tumour targeted therapy.


Subject(s)
Drug Delivery Systems/methods , Hexoses/chemistry , Liposomes/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Line, Tumor , Cell Survival , Ligands , Nanoparticles , Rats , Rats, Sprague-Dawley , Surface Properties
20.
Mater Sci Eng C Mater Biol Appl ; 108: 110461, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31924029

ABSTRACT

A novel bio-responsive co-delivery system based on Poly(DEA)-b-Poly(ABMA-co-OEGMA) (PDPAO, prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization) copolymers was constructed for enhanced cellular internalization and effective combination therapy. Reduction-sensitive 6-mercaptopurine (6MP) based prodrug and pH-sensitive doxorubicin (DOX) based prodrug were grafted onto PDPAO by an azide-alkyne "Click Chemistry" reaction to acquire a pH/reduction-sensitive polymeric prodrug (PDPAO@imine-DOX/cis-6MP), which was able to self-aggregate to form polymeric micelles (M(DOX/6MP)) with an average particle size of 116 ± 2 nm in the water. The resultant micelles could maintain a stable sphere structure and show stability with a small particles' dispersion index in the blood. Importantly, it has been observed that the pH-sensitive surface charge-conversion accompanied pH-triggered DOX release in the biomimetic extracellular acidic environment of tumor tissue and a rapid dual-drug release triggered by pH and GSH in the intracellular environment. The in vitro evaluation of micelles on human cervical cancer (HeLa) and human promyelocytic leukemia (HL-60) cells showed an enhanced cellular uptake because of charge-conversion and exhibited a higher cell-killing performance. Moreover, the graft ratio of DOX and 6MP showed the ability to adjust the cytotoxicity; the micelles with a graft ratio of 2: 1 (M(DOX2/6MP)) displayed the higher cellular inhibition on either HeLa (combination index (CI) = 0.62) or HL-60 (CI = 0.35) cells. Overall, this novel dual-drug-conjugated delivery system might have important potential applications for combination therapy of cancer.


Subject(s)
Click Chemistry , Doxorubicin , Drug Carriers , Mercaptopurine , Neoplasms/drug therapy , Prodrugs , Delayed-Action Preparations/chemical synthesis , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Drug Carriers/chemical synthesis , Drug Carriers/chemistry , Drug Carriers/pharmacology , HL-60 Cells , HeLa Cells , Humans , Mercaptopurine/chemistry , Mercaptopurine/pharmacology , Neoplasms/metabolism , Neoplasms/pathology , Prodrugs/chemical synthesis , Prodrugs/chemistry , Prodrugs/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...