Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1349470, 2024.
Article in English | MEDLINE | ID: mdl-38812518

ABSTRACT

Background: Airway allergic disease (AAD) is a class of autoimmune diseases with predominantly Th2-type inflammation, mainly including allergic rhinitis (AR), allergic asthma (AS), and chronic sinusitis (CRS). There are very complex regulatory mechanisms between immune cells and AAD; however, previous reports found that the functions of the same immune cells in AAD are not identical. Objective: The aim of this study was to explore the causal relationship between different phenotypic immune cells and their association with AAD. Method: Utilizing the publicly available Genome-Wide Association Studies (GWAS) database, this study conducted a bidirectional Mendelian randomization (MR) to assess the causal relationship between immune cells of 731 different immunophenotypes and AAD. The primary assessment methods included inverse variance weighting, weighted median, and MR Egger. Additionally, sensitivity analyses such as MR-PRESSO, leave-one-out, and scatter plots were employed to eliminate the interference of heterogeneity and pleiotropy, ensuring the stability of the causal inference. Result: A total of 38 immune cells with different immunophenotypes were found to be positively and causally associated with AR, of which 26 were protective factors and 12 were risk factors. Positive associations were found between 33 immune cells and AS, of which 14 were protective factors and 19 were risk factors, as well as between 39 immune cells and CRS, of which 22 were protective factors and 17 were risk factors. Finally, the results of all relevant immune cells for the three diseases were taken and intersected, and it was found that CD3 on CD39+-activated Treg (IVWAR = 0.001, IVWCRS = 0.043, IVWAS = 0.027) may be the key immune cell that inhibits the development of AAD (ORAR = 0.940, ORAS = 0.967, ORCRS = 0.976). Conclusion: This study reveals that different immune phenotypes of immune cells are closely related to AAD at the genetic level, which provides a theoretical basis for future clinical studies.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Phenotype , Humans , Asthma/immunology , Asthma/genetics , Immunophenotyping , Rhinitis, Allergic/immunology , Rhinitis, Allergic/genetics , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Risk Factors
2.
ACS Appl Mater Interfaces ; 14(40): 45893-45903, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36191165

ABSTRACT

With the rapid development of the microwave communication industry, microwave dielectric materials have been widely studied as the medium of signal transmission. Nowadays, with the increase in communication frequency, devices are miniaturized, and dielectric materials are required to have higher dielectric constants. At the same time, the miniaturization of devices brings about an increase in power density, which puts forward higher requirements for the thermal conductivity of materials. In this work, polysilylaryl-enyne (PSAE) and Ca0.9La0.067TiO3 (CLT) were chosen as the matrix and filler, respectively, to construct a parallel model composite through a freeze casting method and a 0-3 model composite through the direct mixing method, respectively. After comparing the microstructures of the two models, their dielectric properties and thermal conductivity were measured and simulated. The parallel model composites in the stable range possess uniform parallel structures, and the solid content limit for them could be as high as 73.2%, which is much higher than that of the 0-3 model composites. While the 0-3 model composite possesses an optimal dielectric constant of 25.4 (@10 GHz) and a thermal conductivity of 0.965 W·m-1·K-1, the parallel model composite possesses a 2 times higher dielectric constant of 76.2 (@10 GHz) and a 1 times higher thermal conductivity of 2.095 W·m-1·K-1. Since the parallel model composite possesses much higher dielectric constant and thermal conductivity than traditional 0-3 model composites, it can be an excellent candidate for microwave communication.

3.
RSC Adv ; 11(61): 38894-38906, 2021 Nov 29.
Article in English | MEDLINE | ID: mdl-35493206

ABSTRACT

Bismuth oxychloride (BiOCl) is a promising photocatalyst material for water purification to remove organic pollutants. However, BiOCl materials can only degrade pollutants under ultraviolet-light owing to their wide band gap. Herein, we propose a simple synthesis route based on Bi2O3-B2O3-ZnO-SrO-Na2O (BBZSN) glass to fabricate 3D hierarchical-structured BiOCl materials with rich oxygen vacancies (OVs), which were introduced from BBZSN glass and inhibited the recombination of electron-hole pairs and adjusted the band structure. The photocatalytic activity of the obtained 3D hierarchical-structured BiOCl photocatalyst was evaluated by the degradation of Rhodamine B (RhB) under ultraviolet light and visible light. The experimental results suggested that the as-fabricated flower-shape BiOCl-NaCl could effectively degrade RhB under ultraviolet light (92.7%/20 min) or visible light (71.4%/20 min, 92.8%/100 min) respectively, which indicates its potential to be applied in environmental remediation.

SELECTION OF CITATIONS
SEARCH DETAIL
...