Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(24): 28802-28817, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34109788

ABSTRACT

In this study, a novel class of multifunctional responsive nanoparticles is designed and fabricated as drug nanocarriers for synergetic chemo-photothermal therapy of tumors. The proposed nanoparticles are composed of a thermo-/pH-responsive poly(N-isopropylacrylamide-co-acrylic acid) (PNA) nanogel core, a polydopamine (PDA) layer for photothermal conversion, and an outer folic acid (FA) layer as a targeting agent for the folate receptors on tumor cells. The fabricated nanoparticles show good biocompatibility and outstanding photothermal conversion efficiency. The proposed nanoparticles loaded with doxorubicin (DOX) drug molecules are stable under physiological conditions with low leakage of drugs, while rapidly release drugs in environments with low pH conditions and at high temperature. The experimental results show that the drug release process is mainly governed by Fickian diffusion. In vitro cell experimental results demonstrate that the PNA-DOX@PDA-FA nanoparticles can be phagocytized by 4T1 tumor cells and release drugs in tumor cell acidic environments, and confirm that the combined chemo and photothermal therapeutic efficacy of PNA-DOX@PDA-FA nanoparticles is higher than the photothermal therapeutic efficacy or the chemotherapeutic efficacy alone. The proposed multifunctional responsive nanoparticles in this study provide a novel class of drug nanocarriers as a promising tool for synergetic chemo-photothermal therapy of tumors.


Subject(s)
Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Carriers/chemistry , Multifunctional Nanoparticles/chemistry , Acrylamides/chemistry , Acrylamides/metabolism , Animals , Antineoplastic Agents/chemistry , Cell Line, Tumor , Doxorubicin/chemistry , Drug Carriers/metabolism , Drug Carriers/radiation effects , Drug Liberation , Endocytosis/physiology , Folic Acid/analogs & derivatives , Folic Acid/metabolism , Humans , Hydrogen-Ion Concentration , Indoles/chemistry , Indoles/metabolism , Indoles/radiation effects , Infrared Rays , Mice , Multifunctional Nanoparticles/metabolism , Photothermal Therapy , Polymers/chemistry , Polymers/metabolism , Polymers/radiation effects , Temperature
2.
Chemphyschem ; 19(16): 2025-2036, 2018 08 17.
Article in English | MEDLINE | ID: mdl-29539212

ABSTRACT

A simple device, which is equipped with a non-woven fabric filter medium immobilized with ion-recognizable smart hollow microgels, is developed for facile detection of trace lead(II) ions (Pb2+ ). The ion-recognizable smart microgels are made of poly(N-isopropylacrylamide-co-benzo-18-crown-6-acrylamide) (PNB), in which the 18-crown-6 groups act as the sensors of Pb2+ and the N-isopropylacrylamide groups act as the actuators. The PNB hollow microgels can isothermally change from a shrunk state to a swollen state in response to recognizing Pb2+ in the aqueous environment due to the electrostatic repulsion among the charged 18-crown-6/Pb2+ complex groups and the enhancement of hydrophilicity of the microgels. Due to the hollow structures, the PNB microgels show remarkable isothermal swelling ratio. Thus, the flux of solution pass through the non-woven fabric filter medium decreases significantly because of the remarkable reduction in the space for liquid flowing upon recognizing Pb2+ . The Pb2+ concentration can be detected quantitatively by simply and easily measuring the change of solution flux using the proposed device, which is operated without external power supply or spectroscopic measurements. The strategy proposed in this study provides a promising method for facile detection of trace Pb2+ in aqueous environments.

SELECTION OF CITATIONS
SEARCH DETAIL
...