Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Environ Sci Technol ; 58(23): 10388-10397, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38828512

ABSTRACT

Selective catalytic reduction of nitrogen oxides (NOx) with ammonia (NH3-SCR) is an efficient NOx reduction strategy, while the denitrification (deNOx) catalysts suffer from serious deactivation due to the coexistence of multiple poisoning substances, such as alkali metal (e.g., K), SO2, etc., in industrial flue gases. It is essential to understand the interaction among various poisons and their effects on the deNOx process. Herein, the ZSM-5 zeolite-confined MnSmOx mixed (MnSmOx@ZSM-5) catalyst exhibited better deNOx performance after the poisoning of K, SO2, and/or K&SO2 than the MnSmOx and MnSmOx/ZSM-5 catalysts, the deNOx activity of which at high temperature (H-T) increased significantly (>90% NOx conversion in the range of 220-480 °C). It has been demonstrated that K would occupy both redox and acidic sites, which severely reduced the reactivity of MnSmOx/ZSM-5 catalysts. The most important, K element is preferentially deposited at -OH on the surface of ZSM-5 carrier due to the electrostatic attraction (-O-K). As for the K&SO2 poisoning catalyst, SO2 preferred to be combined with the surface-deposited K (-O-K-SO2ads) according to XPS and density functional theory (DFT) results, the poisoned active sites by K would be released. The K migration behavior was induced by SO2 over K-poisoned MnSmOx@ZSM-5 catalysts, and the balance of surface redox and acidic site was regulated, like a synergistic promoter, which led to K-poisoning buffering and activity recovery. This work contributes to the understanding of the self-detoxification interaction between alkali metals (e.g., K) and SO2 on deNOx catalysts and provides a novel strategy for the adaptive use of one poisoning substance to counter another for practical NOx reduction.


Subject(s)
Zeolites , Zeolites/chemistry , Catalysis , Oxidation-Reduction , Nitrogen Oxides/chemistry , Oxides/chemistry , Ammonia/chemistry , Denitrification , Metals/chemistry
2.
Environ Res ; 258: 119284, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38823618

ABSTRACT

High concentrations of PM2.5 with enriched levels of metallic constituents could significantly affect the health and comfort of metro employees. To avoid overestimating the exposure risks, we investigated the bioaccessibility of toxic metals (TMs) bound in PM2.5 from the Nanchang metro using Gamble's solution method, and qualitatively analyzed the impact of valence state and various sources on the bioaccessibility of TMs bound to PM2.5. The results showed that the bioaccessibility of the studied TMs ranged from 2.1% to 88.1%, with As, Ba, Co and Pb being the most bioaccessible and V, Fe and Cr being the less bioaccessible. The bioaccessibility of TMs in our subway PM2.5 samples varied based on their valence and species, showing higher valence states associated with increased bioaccessibility. Vehicle traffic, secondary aerosols and wheel/rail sources were found to be significantly and positively associated with the bioaccessibility of several TMs, implying a severe potential risk from these three sources. Although both non-carcinogenic and carcinogenic risks associated with total TMs were found to be high, only As and Cr(VI) posed a considerable carcinogenic risk to metro workers based on the bioaccessible fractions and were therefore priority pollutants. In addition, potential carcinogenic risk was found to be more severe in platform than that in ticket counter. The results indicate that considerable efforts are required to control and manage PM2.5 and the associated TMs in the Nanchang subway, particularly from traffic, wheel/rail and secondary sources, to protect the health of metro staff and the public.

3.
Environ Sci Pollut Res Int ; 30(57): 120863-120876, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37947934

ABSTRACT

To investigate the impact of quarantine measures and fireworks banning policy on chemical composition and sources of PM2.5 and associated health risks in small, less developed cities, we sampled in Guigang (GG), Shaoyang (SY), and Tianshui (TS), located in eastern, central, and north-western China, in 2020 Spring Festival (CSF). Mass concentration, carbonaceous, metals, and WSIIs of PM2.5 were analyzed. The study found high levels of PM2.5 pollution with the average concentration of 168.05 µg/m3 in TS, 134.59 µg/m3 in SY, and 125.71 µg/m3 in GG. A negative correlation was found between the urbanization level and PM2.5 pollution. Lockdown measures reduced PM2.5 mass and industrial elements. In non-control period (NCP), combustion and fireworks were the major sources of PM2.5 in GG and TS, and industry source accounted for a significant proportion in the relatively more urbanized SY. Whereas on control period (CP), soil dust, combustion, and road dust were the main source in GG, secondary aerosols dominated in SY and TS. Our health risk assessment showed unacceptable levels of non-carcinogenic and carcinogenic risks over the study areas, despite lockdown measures reducing health risks. As and Cr(VI), as the major pollutants, their associated sources, industry sources, and fireworks sources, posed the greatest risk to people at the sampling sites after exposure to PM2.5. This work supports the improvement of PM2.5 control strategies in small Chinese cities during the CSF.


Subject(s)
Air Pollutants , Humans , Air Pollutants/analysis , Particulate Matter/analysis , Cities , Urbanization , Holidays , Environmental Monitoring , Dust/analysis , Seasons , China , Vehicle Emissions/analysis
4.
Adv Mater ; 35(32): e2302525, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37321653

ABSTRACT

Facile approaches capable of constructing stable and structurally diverse porous liquids (PLs) that can deliver high-performance applications are a long-standing, captivating, and challenging research area that requires significant attention. Herein, a facile surface deposition strategy is demonstrated to afford diverse type III-PLs possessing ultra-stable dispersion, external structure modification, and enhanced performance in gas storage and transformation by leveraging the expeditious and uniform precipitation of selected metal salts. The Ag(I) species-modified zeolite nanosheets are deployed as the porous host to construct type III-PLs with ionic liquids (ILs) containing bromide anion , leading to stable dispersion driven by the formation of AgBr nanoparticles. The as-afforded type-III PLs display promising performance in CO2 capture/conversion and ethylene/ethane separation. Property and performance of the as-produced PLs can be tuned by the cation structure of the ILs, which can be harnessed to achieve polarity reversal of the porous host via ionic exchange. The surface deposition procedure can be further extended to produce PLs from Ba(II)-functionalized zeolite and ILs containing [SO4 ]2- anion driven by the formation of BaSO4 salts. The as-produced PLs are featured by well-maintained crystallinity of the porous host, good fluidity and stability, enhanced gas uptake capacity, and attractive performance in small gas molecule utilization.

5.
Chemosphere ; 302: 134884, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35551937

ABSTRACT

Volatile organic compounds (VOCs) are the main precursor for ozone formation and hazardous to human health. Light alkane as one of the typical VOCs is difficult to degrade to CO2 and H2O by catalytic degradation method due to its strong C-H bond. Herein, a series of ultrafine Ru nanoclusters (<0.95 nm) enveloped in silicalite-1 (S-1) zeolite catalysts were designed and prepared by a simple one-pot method and applied for catalytic degradation of propane. The results demonstrate that the enveloped Ru1@S-1 catalyst has excellent propane degradation performance. Its T95 is as low as 294 °C with moisture, and the turnover frequency (TOF) value is up to 5.07 × 10-3 s-1, evidently higher than that of the comparison supported catalyst (Ru1/S-1). Importantly, Ru1@S-1 exhibits superior thermal stability, water resistance and recyclability, which should be attributed to the confinement and shielding effect of the S-1 shell. The in-situ DRIFTS result reveals that the propane degradation over Ru1@S-1 follows the Mars-van-Krevelen (MvK) mechanism, where the hydroxy from the framework of zeolite can provide the active oxygen species. Our work provides a new candidate and guideline for an efficient and stable catalyst for the low-temperature degradation of the light alkane VOCs.


Subject(s)
Volatile Organic Compounds , Zeolites , Alkanes , Catalysis , Humans , Propane , Temperature , Volatile Organic Compounds/chemistry , Zeolites/chemistry
6.
Small ; 18(12): e2107123, 2022 03.
Article in English | MEDLINE | ID: mdl-35174966

ABSTRACT

Supported ultrasmall metal/metal oxide nanoparticles (UMNPs) with sizes in the range of 1-5 nm exhibit unique properties in sensing, catalysis, biomedicine, etc. However, the metal-support and metal-metal precursor interactions were not as well controlled to stabilize the metal nanoparticles on/in the supports. Herein, DNA is chosen as a template and a ligand for the silica-supported UMNPs, taking full use of its binding ability to metal ions via either electrostatic or coordination interactions. UMNPs thus are highly dispersed in silica via self-assembly of DNA and DNA-metal ion interactions with the assistance of a co-structural directing agent (CSDA). A large number of metal ions are easily retained in the mesostructured DNA-silica materials, and their growth is controlled by the channels after calcination. Based on this directing concept, a material library, consisting of 50 mono- and 54 bicomponent UMNPs confined within silica and with narrow size distribution, is created. Theoretical calculation proves the indispensability of DNA with combination of several organics in the synthesis of ultrasmall metal nanoparticles. The Pt-silica and Pt/Ni-silica chosen from the library exhibit good catalytic performance for toluene combustion. This generalizable and straightforward synthesis strategy is expected to widen the corresponding applications of supported UMNPs.


Subject(s)
Metal Nanoparticles , Silicon Dioxide , Catalysis , DNA , Metal Nanoparticles/chemistry , Oxides/chemistry , Silicon Dioxide/chemistry
7.
Nat Commun ; 13(1): 295, 2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35027532

ABSTRACT

Zeolite-confined metal nanoparticles (NPs) have attracted much attention owing to their superior sintering resistance and broad applications for thermal and environmental catalytic reactions. However, the pore size of the conventional zeolites is usually below 2 nm, and reactants are easily blocked to access the active sites. Herein, a facile in situ mesoporogen-free strategy is developed to design and synthesize palladium (Pd) NPs enveloped in a single-crystalline zeolite (silicalite-1, S-1) with intra-mesopores (termed Pd@IM-S-1). Pd@IM-S-1 exhibited remarkable light alkanes deep oxidation performances, and it should be attributed to the confinement and guarding effect of the zeolite shell and the improvement in mass-transfer efficiency and active metal sites accessibility. The Pd-PdO interfaces as a new active site can provide active oxygen species to the first C-H cleavage of light alkanes. This work exemplifies a promising strategy to design other high-performance intra-crystalline mesoporous zeolite-confined metal/metal oxide catalysts for high-temperature industrial thermal catalysis.

8.
J Hazard Mater ; 398: 122986, 2020 Nov 05.
Article in English | MEDLINE | ID: mdl-32502803

ABSTRACT

Small pore zeolites with chabazite structure have been commercialized for selective catalytic reduction (SCR) of nitrogen oxides (NOx) with ammonium (NH3) from diesel exhaust. However, conventional zeolite synthesis processes detrimental effects on the environment due to the consumption of large amount of water, organic templates. Thus, this study proposed a green synthesis process with addition of minimal amount of water, structure directing agent and shortened steps to prepare nano-sized SSZ-13 (0.12 µm) using trans-crystallization strategy and exhibited enhanced performance for NOx removal after copper ion-exchange. The operation temperature window (NOx conversion >90 %) as well as the SO2 and H2O resistance over the green-route prepared nano-sized SSZ-13 (178-480 °C) outperformed the conventional SSZ-13 (29.8 µm, 211-438 °C) mainly due to the much shorter diffusion path. This clearly implied that the mass transportation was key for NH3-SCR of NOx on such small pore zeolite catalysts, which was further confirmed via an in-depth mass transportation calculation process. These results demonstrate that the Cu-nano-sized SSZ-13 prepared by the environmental benign route has great potential to act as a new generation of deNOx catalyst for diesel exhaust and provided a guideline for researchers to develop new methods to synthesize nano-catalysts for air pollution control.

9.
J Hazard Mater ; 396: 122592, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32298863

ABSTRACT

Nitrogen oxides (NOx) are a primary source of air pollutants from combustion of fossil fuels. Though Mn-Ce based catalysts exhibit superior low temperature activities, their water and SO2 tolerance is inferior to other metal oxide catalysts, due to their strong water adsorption and sulfate species formation tendency at low reaction temperatures. Herein, a confinement strategy was adopted to design and synthesize a novel Mn-Ce based catalyst for selective catalytic reduction of NOx with NH3. The confined MnCeOx catalyst was assembled with a simple one pot method, using a mesoporous zeolite (ZSM-5) as the shell and Mn-Ce oxides as the active core (MnCeOx@Z5). Owing to the zeolite shell's shielding effect and the synergy between the alumina-silica zeolite shell's acidic properties and the mixed oxide cores' redox properties, the novel MnCeOx@Z5 catalyst displayed enhanced water and SO2 resistance as compared to the MnCeOx supported on ZSM-5 (MnCeOx/Z5) and its precursor (MnCeOx@Al-SiO2). Evidently, the zeolite sheath hinders sulfate species formation, and this phenomenon was further investigated by in situ diffuse reflectance infrared Fourier transform spectroscopy (In situ DRIFTS). The novel shielding and acid-redox synergy effect/strategy adopted in this work can be applied to design other high performance deNOx catalysts for air pollution control.

10.
J Hazard Mater ; 385: 121593, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31744726

ABSTRACT

Hierarchical ZSM-5 zeolite with meso- and micro-pore structures was successfully prepared through a facile one-pot hydrothermal synthesis method using bifunctional template. After copper ion-exchange, it was applied for the selective catalytic reduction of NO with NH3 (NH3-SCR). Compared with conventional Cu-ZSM-5 catalyst containing only micropores, the hierarchical catalyst with ca. 2 wt.% Cu loading displayed significantly improved catalytic performance. Particularly, the hierarchical zeolite catalyst also displayed excellent hydrothermal stability and sulfur resistance that exhibited great potential in practical application. Characterization techniques such as XRD, N2 physisorption, temperature programmed desorption/reduction (TPD/TPR) and in situ diffuse reflectance infrared Fourier transform spectroscopy (in situ DRIFTS) were comprehensively used to reveal the relationship between zeolite structure and catalytic properties. It was concluded that the hierarchically porous structure could not only improve the mass transfer of reactant/product but also provide larger specific surface area, higher surface acidity, larger NO adsorption capacity. And we found that bidentate nitrate species was more active in Cu-ZSM-5-meso than Cu-ZSM-5-C, which were all beneficial to the NH3-SCR reaction. This work can provide a guideline to design other high performance hierarchical zeolites with different crystalline structures (such as CHA, LTA) for efficient catalytic NOx removal processes.

11.
Angew Chem Int Ed Engl ; 57(29): 8953-8957, 2018 Jul 16.
Article in English | MEDLINE | ID: mdl-29787634

ABSTRACT

An efficient strategy (enhanced metal oxide interaction and core-shell confinement to inhibit the sintering of noble metal) is presented confined ultrathin Pd-CeOx nanowire (2.4 nm) catalysts for methane combustion, which enable CH4 total oxidation at a low temperature of 350 °C, much lower than that of a commercial Pd/Al2 O3 catalyst (425 °C). Importantly, unexpected stability was observed even under harsh conditions (800 °C, water vapor, and SO2 ), owing to the confinement and shielding effect of the porous silica shell together with the promotion of CeO2 . Pd-CeOx solid solution nanowires (Pd-Ce NW) as cores and porous silica as shells (Pd-CeNW@SiO2 ) were rationally prepared by a facile and direct self-assembly strategy for the first time. This strategy is expected to inspire more active and stable catalysts for use under severe conditions (vehicle emissions control, reforming, and water-gas shift reaction).

12.
Chemistry ; 24(34): 8615-8623, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29645290

ABSTRACT

Mesoporous MFI zeolites (MMZs) have been constructed by using the surfactant-containing azobenzene segment in the hydrophobic tail. The cylindrical π-π stacking of azeobenzene groups is considered to be the key factor to form the ordered mesostructure through cooperative structural matching and the rearrangement of MFI frameworks. The mesostructure has been tuned from a disordered hierarchical arrangement into an ordered 2D square p4mm structure by changing the length of the alkyl chain between the diquaternary ammonium head group and azobenzene group. The geometric matching between the MFI zeolitic framework and the alkyl chain length plays an important role in the construction of the crystallographically correlated mesostructure with 2D square ordering. A combination of X-ray diffraction patterns and electron microscopy studies provides visible evidence for the mesostructural transformation from a short-range hexagonal or lamellar ordering to 2D square mesostructure.

13.
ACS Appl Mater Interfaces ; 10(11): 9220-9224, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29498506

ABSTRACT

Most of the industrial and environmental catalytic reactions are operated at high temperature for a long time, and the sintering of the active centers is the main factor leading to catalysts deactivation, especially for noble metal catalysts. Herein we develop a dual confinement (enhanced metal-oxide interaction and the porous shell confinement) strategy to prepare Pd-Sn pseudo solid solution and in situ embedded in microporous silica for the first time and showed superior catalytic performance for CO and propane total oxidation (two main vehicle emission gases), even stored more than 640 days.

14.
Chemphyschem ; 18(12): 1533-1540, 2017 Jun 20.
Article in English | MEDLINE | ID: mdl-28322490

ABSTRACT

To investigate the dispersion behaviour of composite oxides on supports, and to obtain better supports for Pd for CO oxidation, a series of Y2 Sn2 O7 /Al2 O3 composite oxides with different Y2 Sn2 O7 loadings were prepared by a deposition-precipitation method. XRD and X-ray photoelectron spectroscopic extrapolation methods revealed that, similar to single-component metal oxides, composite oxides can also disperse spontaneously on support surfaces to form a monolayer with a certain capacity. The monolayer dispersion capacity/threshold for Y2 Sn2 O7 on the surface of γ-Al2 O3 is 0.109 mmol per 100 m2 γ-Al2 O3 , corresponding to 7.2 wt % Y2 Sn2 O7 loading. This is the first work to demonstrate monolayer dispersion of a composite oxide on a support. After combining Y2 Sn2 O7 with γ-Al2 O3 , active oxygen species can be introduced onto the catalyst surfaces. Thus, the interaction between Pd and the support is strengthened, the dispersion of Pd is improved in comparison with the single-component Y2 Sn2 O7 support, and a synergistic effect is induced between Pd and the composite support, which is beneficial to catalyst activity. By tuning the γ-Al2 O3 surface with different amounts of pyrochlore Y2 Sn2 O7 , CO oxidation activity on 1 % Pd/Y2 Sn2 O7 /Al2 O3 was improved. These findings may provide new insights into the design and preparation of effective supported noble metal catalysts with lower contents of noble metals.

15.
J Colloid Interface Sci ; 473: 100-11, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27060230

ABSTRACT

To explore metal oxide-support interaction and its effect on O2 adsorption, periodic DFT calculations were used to explore the most preferred O2 molecular and dissociative adsorption on stoichiometric (MO2) and defective (MO2-x) (M=Ru, Ir, Sn) films supported on rutile TiO2(110), and compared with that on pure surfaces without TiO2(110) support. For defective RuO2-x films, it is revealed that the TiO2(110) support and the film thickness have an evident impact on the O2 adsorbed species. On the contrary, the two factors show little influence for defective IrO2-x and SnO2-x films. The analyses for Bader charge and density of states indicate that the reducibility change of the unsaturated surface Ru atoms, which are adjacent to the bridge oxygen vacancies, is responsible for this O2 adsorption alteration. These results provide insights into the oxide-oxide interaction, and its effect on the properties of supported oxide catalysts.

16.
Chem Commun (Camb) ; 49(26): 2709-11, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23435621

ABSTRACT

A center radially fibrous silica encapsulated TS-1 zeolite (TS-1@KCC-1) has been synthesized in a microemulsion system for the first time. Supporting the Rh(OH)3 species, this novel core-shell structured material serves as a robust bifunctional catalyst for one-pot synthesis of benzamide from benzaldehyde, ammonia and hydrogen peroxide, in which the aldehyde ammoximation and oxime rearrangement occur in a tandem way.


Subject(s)
Benzamides/chemical synthesis , Silicates/chemistry , Titanium/chemistry , Ammonia/chemistry , Benzaldehydes/chemistry , Benzamides/chemistry , Catalysis , Hydrogen Peroxide/chemistry , Molecular Structure , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...