Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Res (Camb) ; 2022: 3838126, 2022.
Article in English | MEDLINE | ID: mdl-35321519

ABSTRACT

Objective: Postmenopausal women experiences osteoporotic structural damage and bone fragility resulting from reduced bone formation and increased bone resorption. Osteoporosis frequently affects the vertebral column and causes compression fractures. This study aims to characterize roles of miRNAs in osteoporosis and subsequent incidence risk of vertebral fractures for postmenopausal women. Methods. Differentially expressed miRNAs between osteoporotic patients with vertebral fractures and osteoporotic patients without fracture were identified. This retrospective study included 78 osteoporotic patients with vertebral fractures and 82 osteoporotic patients without vertebral fractures. The plasma levels of bone metabolic markers, 25-hydroxyvitamin D (25-(OH)VitD), propeptide of type I procollagen (PINP), and ß-Carboxyl terminal peptide (ß-CTx), were detected using the patented electro-chemiluminescence (ECLIA) method. The expression levels of miR-491-5p and miR-485-3p were determined by qRT-PCR. Pearson correlation analysis was carried out to assess the relationship between miR-491-5p, miR-485-3p, and bone metabolic markers. Receiver operating characteristic (ROC) curves and the area under the ROC curve (AUC) were used to evaluate the performance of miR-491-5p and miR-485-3p in diagnosing the occurrence of vertebral fractures in osteoporotic patients.Results: The plasma levels of PINP and ß-CTx were elevated but the plasma level of 25-(OH)VitD was declined in osteoporotic patients with vertebral fractures when comparable to those without (< 0.05). The plasma expression levels of miR-491-5p and miR-485-3p were declined osteoporotic patients with vertebral fractures when comparable to those without (< 0.001). Pearson correlation analysis revealed that the relative expression level of miR-491-5p was negatively correlated with the level of 25-(OH)VitD (r = -0.518, < 0.001) but positively correlated with the levels of PINP (r = 0.547, < 0.001) and ß-CTx (r = 0.380, < 0.001). We also observed a negative correlation between the relative expression level of miR-485-3p and 25-(OH)VitD (r = -0.388, < 0.001), a positive correlation between miR-485-3p and PINP (r = 0.422,< 0.001). ROC curves for prediction of vertebral fracture following osteoporosis in postmenopausal women by miR-491-5p expression yielded 0.866 AUC and by miR-485-3p expression produced 0.848 AUC. Conclusion: The data suggest that downregulated expressions of miR-491-5p and miR-485-3p may be involved in the occurrence of vertebral fractures in postmenopausal women with osteoporosis.


Subject(s)
MicroRNAs , Osteoporosis , Spinal Fractures , Biomarkers , Female , Humans , MicroRNAs/genetics , Osteoporosis/genetics , Postmenopause/genetics , Retrospective Studies , Spinal Fractures/genetics
2.
Int J Mol Sci ; 20(14)2019 Jul 13.
Article in English | MEDLINE | ID: mdl-31337051

ABSTRACT

Coccomyxa subellipsoidea C-169 (C-169) is an oleaginous microalga which is promising for renewable biofuel production. MicroRNAs (miRNAs), as the pivotal modulators of gene expression at post-transcriptional level, are prospective candidates for bioengineering practice. However, so far, no miRNA in C-169 has been reported and its potential impact upon CO2 supplementation remains unclear. High-throughput sequencing of small RNAs from C-169 cultured in air or 2% CO2 revealed 124 miRNAs in total, including 118 conserved miRNAs and six novel ones. In total, 384 genes were predicted as their potential target genes, 320 for conserved miRNAs and 64 for novel miRNAs. The annotated target genes were significantly enriched in six KEGG pathways, including pantothenate and CoA biosynthesis, C5-branched dibasic acid metabolism, 2-oxocarboxylic acid metabolism, butanoate metabolism, valine, leucine and isoleucine biosynthesis and alpha-linolenic acid metabolism. The miRNAs' target genes were enriched in lipid metabolism as well as RNA-interacting proteins involved in translation, transcription and rRNA processing. The pioneering identification of C-169 miRNAs and analysis of their putative target genes lay the foundation for further miRNA research in eukaryotic algae and will contribute to the development of C-169 as an oleaginous microalga through bioengineering in the future.


Subject(s)
Chlorophyta/genetics , Gene Expression Regulation , MicroRNAs/genetics , RNA Interference , Chlorophyta/metabolism , Computational Biology/methods , Energy Metabolism , Gene Regulatory Networks , MicroRNAs/chemistry , Multigene Family
3.
J Dairy Sci ; 101(11): 9647-9658, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30146288

ABSTRACT

Chloride ion concentration in milk was determined by pulsed amperometric detection in a flow injection system. Results showed that the Au electrode lost 3 electrons at 1.10 V and formed chloroaurate ions (AuCl4-) by combining with chloride ions, after which AuCl4- was partly reduced to Au at 0.6 V. Based on the electrochemical process, a triple waveform with detection potential of 1.15 V, detection time of 150 ms, oxidation potential of 1.4 V, oxidation time of 550 ms, reduction potential of 0 V, and reduction time of 400 ms was applied to the Au electrode for detecting chloride ion concentration in milk. The approach is rapid and automatic and features a detection limit of 0.005 g/L. The relative standard deviation obtained by 60 repetitive injections reached 1.48% at 2 g/L of NaCl. The method developed using the Au electrode without modification was used to analyze the chloride ion concentration in raw milk without preprocessing. The method showed good agreement with potentiometric titration.


Subject(s)
Chlorine/analysis , Flow Injection Analysis/methods , Milk/chemistry , Animals , Electrochemistry/methods , Electrodes , Electrons , Food Contamination/analysis , Limit of Detection , Oxidation-Reduction
4.
Biotechnol Biofuels ; 9: 151, 2016.
Article in English | MEDLINE | ID: mdl-27453726

ABSTRACT

BACKGROUND: Microalgae are emerging as suitable feedstock for renewable biofuel production and providing a promising way to alleviate green house gas CO2. Characterizing the metabolic pathways involved in the biosynthesis of energy-rich compounds and their global regulation upon elevated CO2 is necessary to explore the mechanism underlying rapid growth and lipid accumulation, so as to realize the full potential of these organisms as energy resources. RESULTS: In the present study, 2 and 5 % CO2 increased growth rate and lipid accumulation in autotrophically cultured green alga Coccomyxa subellipsoidea C-169. Overall biomass productivity as 222 mg L(-1) day(-1) and fatty acid content as 48.5 % dry cell weight were attained in 2 % CO2, suggesting C-169 as a great candidate for lipid production via CO2 supplementation. Transcriptomic analysis of 2 % against 0.04 % CO2-cultured C-169 unveiled the global regulation of important metabolic processes. Other than enhancing gene expression in the Calvin cycle, C-169 upregulated the expression of phosphoenolpyruvate carboxylase, pyruvate carboxylase and carbamoyl-phosphate synthetase II to enhance the anaplerotic carbon assimilation reactions upon elevated CO2. Upregulation of ferredoxin and ferredoxin-NADP(+) reductase implied that plentiful energy captured through photosynthesis was transferred through ferredoxin to sustain rapid growth and lipid accumulation. Genes involved in the glycolysis, TCA cycle and oxidative phosphorylation were predominantly upregulated presumably to provide abundant intermediates and metabolic energy for anabolism. Coordinated upregulation of nitrogen acquisition and assimilation genes, together with activation of specific carbamoyl-phosphate synthetase and ornithine pathway genes, might help C-169 to maintain carbon/nitrogen balance upon elevated CO2. Significant downregulation of fatty acid degradation genes, as well as the upregulation of fatty acid synthesis genes at the later stage might contribute to the tremendous lipid accumulation. CONCLUSION: Global and collaborative regulation was employed by C-169 to assimilate more carbon and maintain carbon/nitrogen balance upon elevated CO2, which provide abundant carbon skeleton and affluent metabolic energy to sustain rapid growth and lipid accumulation. Data here for the first time bring significant insights into the regulatory profile of metabolism and acclimation to elevated CO2 in C-169, which provide important information for future metabolic engineering in the development of sustainable microalgae-based biofuels.

SELECTION OF CITATIONS
SEARCH DETAIL
...