Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ChemSusChem ; : e202400076, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38429246

ABSTRACT

Rechargeable aqueous zinc metal batteries (AZMBs) are considered as a potential alternative to lithium-ion batteries due to their low cost, high safety, and environmental friendliness. However, the Zn anodes in AZMBs face severe challenges, such as dendrite growth, metal corrosion, and hydrogen evolution, all of which are closely related to the Zn/electrolyte interface. This article offers a short review on surface passivation to alleviate the issues on the Zn anodes. The composition and structure of the surface layers significantly influence their functions and then the performance of the Zn anodes. The recent progresses are introduced, according to the chemical components of the passivation layers on the Zn anodes. Moreover, the challenges and prospects of surface passivation in stabilizing Zn anodes are discussed, providing valuable guidance for the development of AZMBs.

2.
Angew Chem Int Ed Engl ; 63(21): e202401441, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38533760

ABSTRACT

Zn metal as a promising anode of aqueous batteries faces severe challenges from dendrite growth and side reactions. Here, tetraphenylporphyrin tetrasulfonic acid (TPPS) is explored as an electrolyte additive for advanced Zn anodes. It is interesting to note that TPPS spontaneously assembles into unique aggregates. As they adsorb on the Zn anode, the aggregates enhance the resistance to electrolyte percolation and dendrite growth compared to single molecules. Meanwhile, TPPS facilitates anion association in the solvation sheath of Zn2+, and boosts the transference number of Zn2+ up to 0.95. Therefore, anion-related side reactions and anion-induced electrode overpotentials are reduced accordingly. In this context, the electrolyte containing TPPS exhibits excellent electrochemical performance. Even under a high loading of MnO2 (25 mg cm-2), a limited Zn supply (N/P ratio=1.7), and a lean electrolyte (15 µL mAh-1), the full cells still represent a higher cumulative capacity compared to the reported data. The advantages of this electrolyte are also adapted to other cathode materials. The pouch cells of Zn||NaV3O8 ⋅ 1.5H2O realize a capacity of ~0.35 Ah at 0.4 C under harsh conditions.

3.
Chem Commun (Camb) ; 60(6): 750-753, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38116817

ABSTRACT

Zn anodes of aqueous batteries face severe challenges from side reactions and dendrite growth. Here, triethanolamine (TEOA) is developed as an electrolyte additive to address these challenges. It enhances the exposure of Zn(002) and diminishes the change in pH. Therefore, the electrolyte containing TEOA shows improved electrochemical performance.

4.
Angew Chem Int Ed Engl ; 62(50): e202315834, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-37933998

ABSTRACT

Aqueous zinc metal batteries hold great promise for large-scale energy storage because of their high safety, rich material resources and low cost. However, the freeze of aqueous electrolytes hinders low-temperature operation of the batteries. Here, aqueous localized anion-cation aggregated electrolytes composed of Zn(BF4 )2 as the salt and tetrahydrofuran (THF) as the diluent, are developed to improve the low-temperature performance of the Zn anode. THF promotes the inclusion of BF4 - in the solvation sheath of Zn2+ , facilitating the formation of ZnF2 -rich solid-electrolyte-interphase. THF also affects the hydrogen bonding between neighboring H2 O molecules, effectively lowering the freezing point. Therefore, the full cells of Zn||polyaniline (PANI) exhibit an ultralong cycle life of 8000 cycles with an average Coulombic efficiency of 99.99 % at -40 °C. Impressively, the pouch cells display a high capacity retention of 86.2 % after 500 cycles at -40 °C, which demonstrates the great prospect of such electrolytes in cold regions. This work provides new insights for the design of low-temperature aqueous electrolytes.

5.
Angew Chem Int Ed Engl ; 62(38): e202310290, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37522818

ABSTRACT

Stable Zn anodes with a high utilization efficiency pose a challenge due to notorious dendrite growth and severe side reactions. Therefore, electrolyte additives are developed to address these issues. However, the additives are always consumed by the electrochemical reactions over cycling, affecting the cycling stability. Here, hexamethylphosphoric triamide (HMPA) is reported as an electrolyte additive for achieving stable cycling of Zn anodes. HMPA reshapes the solvation structures and promotes anion decomposition, leading to the in situ formation of inorganic-rich solid-electrolyte-interphase. More interestingly, this anion decomposition does not involve HMPA, preserving its long-term impact on the electrolyte. Thus, the symmetric cells with HMPA in the electrolyte survive ≈500 h at 10 mA cm-2 for 10 mAh cm-2 or ≈200 h at 40 mA cm-2 for 10 mAh cm-2 with a Zn utilization rate of 85.6 %. The full cells of Zn||V2 O5 exhibit a record-high cumulative capacity even under a lean electrolyte condition (E/C ratio=12 µL mAh-1 ), a limited Zn supply (N/P ratio=1.8) and a high areal capacity (6.6 mAh cm-2 ).

6.
Angew Chem Int Ed Engl ; 62(34): e202308068, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37400421

ABSTRACT

Zn metal as one of the promising anodes of aqueous batteries possesses notable advantages, but it faces severe challenges from severe side reactions and notorious dendrite growth. Here, ultrathin nanosheets of α-zirconium phosphate (ZrP) are explored as an electrolyte additive. The nanosheets not only create a dynamic and reversible interphase on Zn but also promote the Zn2+ transportation in the electrolyte, especially in the outer Helmholtz plane near ZrP. Benefited from the enhanced kinetics and dynamic interphase, the pouch cells of Zn||LiMn2 O4 using this electrolyte remarkably improve electrochemical performance under harsh conditions, i.e. Zn powders as the Zn anode, high mass loading, and wide temperatures. The results expand the materials available for this dynamic interphase, provide an insightful understanding of the enhanced charge transfer in the electrolyte, and realize the combination of dynamic interphase and enhanced kinetics for all-climate performance.

7.
Nano Lett ; 22(4): 1750-1758, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35119870

ABSTRACT

Metallic Zn as a promising anode material of aqueous batteries suffers from severe parasitic reactions and notorious dendrite growth. To address these issues, the desolvation and nucleation processes need to be carefully regulated. Herein, Zn foils coated by ZnF2-Ag nanoparticles (ZnF2-Ag@Zn) are used as a model to modulate the desolvation and nucleation processes by hybrid surfaces, where Ag has a strong affinity to Zn adatoms and ZnF2 shows an intense adsorption to H2O. This selective adsorption of different species on ZnF2 and Ag reduces the mutual interference between two species. Therefore, ZnF2-Ag@Zn exhibits the electrochemical performance much better than ZnF2@Zn or Ag@Zn. Even at -40 °C, the full cells using ZnF2-Ag@Zn demonstrate an ultralong lifespan of 5000 cycles with a capacity retention of almost 100%. This work provides new insights to improve the performance of Zn metal batteries, especially at low temperatures.


Subject(s)
Metal Nanoparticles , Zinc , Adsorption , Silver , Temperature
8.
Water Sci Technol ; 77(11-12): 2699-2708, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29944134

ABSTRACT

In this study, a highly efficient and eco-friendly porous cellulose-based aerogel was synthesized by grafting polyethyleneimine onto quaternized cellulose (PQC) to remove the anionic dye Congo Red (CR). The prepared aerogel had a good flexibility and formability. The adsorbents were characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and elemental analysis. The results showed that there were many amino groups on CE/PQC aerogel and the structure was porous, which increased the adsorption capacity. The effects of initial concentration, adsorbent dose, contact time, temperature, and pH on the dye sorption were all investigated. The adsorption mechanism was also explored, including adsorption kinetics, adsorption isotherms and thermodynamic studies of adsorption. The results showed that the adsorption kinetics and isotherms fitted the pseudo-second-order kinetic model and Langmuir isotherm, respectively. The Langmuir isotherm revealed that the maximum theoretical adsorption capacity of the aerogels for CR was 518.403 mg g-1. The thermodynamic parameters including Gibbs free energy change (ΔG0), enthalpy change (ΔH0) and entropy change (ΔS0), showed the adsorption process was exothermic and spontaneous. These results imply that this new absorbent can be universally and effectively used for the removal of dyes from industrial textile wastewater.


Subject(s)
Cellulose/analogs & derivatives , Coloring Agents/chemistry , Polyethyleneimine/analogs & derivatives , Adsorption , Anions/chemistry , Cellulose/chemistry , Coloring Agents/isolation & purification , Congo Red/chemistry , Congo Red/isolation & purification , Gels/chemistry , Hydrogen-Ion Concentration , Kinetics , Microscopy, Electron, Scanning , Polyethyleneimine/chemistry , Spectroscopy, Fourier Transform Infrared , Temperature , Thermodynamics , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...