Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Entropy (Basel) ; 25(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-37998228

ABSTRACT

This paper focuses on the formation control of multi-robot systems with leader-follower network structure in directed topology to guide a system composed of multiple mobile robot agents to achieve global path navigation with a desired formation. A distributed linear formation control strategy based on the complex Laplacian matrix is employed, which enables the robot agents to converge into a similar formation of the desired formation, and the size and orientation of the formation are determined by the positions of two leaders. Additionally, in order to ensure that all robot agents in the formation move at a common velocity, the distributed control approach also includes a velocity consensus component. Based on the realization of similar formation control of a multi-robot system, the path navigation algorithm is combined with it to realize the global navigation of the system as a whole. Furthermore, a controller enabling the scalability of the formation size is introduced to enhance the overall maneuverability of the system in specific scenarios like narrow corridors. The simulation results demonstrate the feasibility of the proposed approach.

2.
Comput Intell Neurosci ; 2021: 6252362, 2021.
Article in English | MEDLINE | ID: mdl-34925493

ABSTRACT

Fetal movement is an important clinical indicator to assess fetus growth and development status in the uterus. In recent years, a noninvasive intelligent sensing fetal movement detection system that can monitor high-risk pregnancies at home has received a lot of attention in the field of wearable health monitoring. However, recovering fetal movement signals from a continuous low-amplitude background that is heavily contaminated with noise and recognizing real fetal movements is a challenging task. In this paper, fetal movement can be efficiently recognized by combining the strength of Kalman filtering, time and frequency domain and wavelet domain feature extraction, and hyperparameter tuned Light Gradient Boosting Machine (LightGBM) model. Firstly, the Kalman filtering (KF) algorithm is used to recover the fetal movement signal in a continuous low-amplitude background contaminated by noise. Secondly, the time domain, frequency domain, and wavelet domain (TFWD) features of the preprocessed fetal movement signal are extracted. Finally, the Bayesian Optimization algorithm (BOA) is used to optimize the LightGBM model to obtain the optimal hyperparameters. Through this, the accurate prediction and recognition of fetal movement are successfully achieved. In the performance analysis of the Zenodo fetal movement dataset, the proposed KF + TFWD + BOA-LGBM approach's recognition accuracy and F1-Score reached 94.06% and 96.85%, respectively. Compared with 8 existing advanced methods for fetal movement signal recognition, the proposed method has better accuracy and robustness, indicating its potential medical application in wearable smart sensing systems for fetal prenatal health monitoring.


Subject(s)
Fetal Movement , Fetus , Bayes Theorem
3.
J Healthc Eng ; 2021: 1745292, 2021.
Article in English | MEDLINE | ID: mdl-34540183

ABSTRACT

Fetal movement (FM) is an essential physiological parameter to determine the health status of the fetus. To address the problems of harrowing FM signal extraction and the low recognition rate of traditional machine learning classifiers in FM signal detection, this paper develops a passive FM signal detection system based on intelligent sensing technology. FM signals are obtained from the abdomen of the pregnant woman by using accelerometers. The FM signals are extracted and identified according to the clinical nature of the features hidden in the amplitude and waveform of the FM signals that fluctuate in duration. The system consists of four main stages: (i) FM signal preprocessing, (ii) maternal artifact signal preidentification, (iii) FM signal identification, and (iv) FM classification. Firstly, Kalman filtering is used to reconstruct the FM signal in a continuous low-amplitude noise background. Secondly, the maternal artifact signal is identified using an amplitude threshold algorithm. Then, an innovative dictionary learning algorithm is used to construct a dictionary of FM features, and orthogonal matching pursuit and adaptive filtering algorithms are used to identify the FM signals, respectively. Finally, mask fusion classification is performed based on the multiaxis recognition results. Experiments are conducted to evaluate the performance of the proposed FM detection system using publicly available and self-built accelerated FM datasets. The classification results showed that the orthogonal matching pursuit algorithm was more effective than the adaptive filtering algorithm in identifying FM signals, with a positive prediction value of 89.74%. The proposed FM detection system has great potential and promise for wearable FM health monitoring.


Subject(s)
Fetal Monitoring , Fetal Movement , Algorithms , Female , Fetus , Humans , Pregnancy , Signal Processing, Computer-Assisted , Technology
4.
Bioresour Technol ; 138: 345-52, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23624053

ABSTRACT

The artificial neural network (ANN) and genetic algorithm (GA) were combined to optimize the fermentation process for enhancing production of marine bacteriocin 1701 in a 5-L-stirred-tank. Fermentation time, pH value, dissolved oxygen level, temperature and turbidity were used to construct a "5-10-1" ANN topology to identify the nonlinear relationship between fermentation parameters and the antibiotic effects (shown as in inhibition diameters) of bacteriocin 1701. The predicted values by the trained ANN model were coincided with the observed ones (the coefficient of R(2) was greater than 0.95). As the fermentation time was brought in as one of the ANN input nodes, fermentation parameters could be optimized by stages through GA, and an optimal fermentation process control trajectory was created. The production of marine bacteriocin 1701 was significantly improved by 26% under the guidance of fermentation control trajectory that was optimized by using of combined ANN-GA method.


Subject(s)
Bacteriocins/biosynthesis , Biotechnology/methods , Fermentation , Neural Networks, Computer , Algorithms , Analysis of Variance , Bacteriocins/economics , Bioreactors/microbiology , Oxygen/metabolism , Reproducibility of Results , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...