Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
BMC Med Imaging ; 24(1): 103, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702626

ABSTRACT

OBJECTIVE: This study aimed to identify features of white matter network attributes based on diffusion tensor imaging (DTI) that might lead to progression from mild cognitive impairment (MCI) and construct a comprehensive model based on these features for predicting the population at high risk of progression to Alzheimer's disease (AD) in MCI patients. METHODS: This study enrolled 121 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Among them, 36 progressed to AD after four years of follow-up. A brain network was constructed for each patient based on white matter fiber tracts, and network attribute features were extracted. White matter network features were downscaled, and white matter markers were constructed using an integrated downscaling approach, followed by forming an integrated model with clinical features and performance evaluation. RESULTS: APOE4 and ADAS scores were used as independent predictors and combined with white matter network markers to construct a comprehensive model. The diagnostic efficacy of the comprehensive model was 0.924 and 0.919, sensitivity was 0.864 and 0.900, and specificity was 0.871 and 0.815 in the training and test groups, respectively. The Delong test showed significant differences (P < 0.05) in the diagnostic efficacy of the combined model and APOE4 and ADAS scores, while there was no significant difference (P > 0.05) between the combined model and white matter network biomarkers. CONCLUSIONS: A comprehensive model constructed based on white matter network markers can identify MCI patients at high risk of progression to AD and provide an adjunct biomarker helpful in early AD detection.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Diffusion Tensor Imaging , Disease Progression , White Matter , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , White Matter/diagnostic imaging , White Matter/pathology , Diffusion Tensor Imaging/methods , Female , Male , Aged , Aged, 80 and over , Sensitivity and Specificity , Apolipoprotein E4/genetics
2.
Sci Rep ; 14(1): 11760, 2024 05 23.
Article in English | MEDLINE | ID: mdl-38783014

ABSTRACT

This study aimed to develop an optimal radiomics model for preoperatively predicting microsatellite instability (MSI) in patients with rectal cancer (RC) based on multiparametric magnetic resonance imaging. The retrospective study included 308 RC patients who did not receive preoperative antitumor therapy, among whom 51 had MSI. Radiomics features were extracted and dimensionally reduced from T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), diffusion-weighted imaging (DWI), and T1-weighted contrast enhanced (T1CE) images for each patient, and the features of each sequence were combined. Multifactor logistic regression was used to screen the optimal feature set for each combination. Different machine learning methods were applied to construct predictive MSI status models. Relative standard deviation values were determined to evaluate model performance and select the optimal model. Receiver operating characteristic (ROC) curve, calibration curve, and decision curve analyses were performed to evaluate model performance. The model constructed using the k-nearest neighbor (KNN) method combined with T2WI and T1CE images performed best. The area under the curve values for prediction of MSI with this model were 0.849 (0.804-0.887), with a sensitivity of 0.784 and specificity of 0.805. The Delong test showed no significant difference in diagnostic efficacy between the KNN-derived model and the traditional logistic regression model constructed using T1WI + DWI + T1CE and T2WI + T1WI + DWI + T1CE data (P > 0.05) and the diagnostic efficiency of the KNN-derived model was slightly better than that of the traditional model. From ROC curve analysis, the KNN-derived model significantly distinguished patients at low- and high-risk of MSI with the optimal threshold of 0.2, supporting the clinical applicability of the model. The model constructed using the KNN method can be applied to noninvasively predict MSI status in RC patients before surgery based on radiomics features from T2WI and T1CE images. Thus, this method may provide a convenient and practical tool for formulating treatment strategies and optimizing individual clinical decision-making for patients with RC.


Subject(s)
Magnetic Resonance Imaging , Microsatellite Instability , Rectal Neoplasms , Humans , Rectal Neoplasms/genetics , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/surgery , Rectal Neoplasms/pathology , Female , Male , Middle Aged , Retrospective Studies , Aged , Magnetic Resonance Imaging/methods , ROC Curve , Adult , Machine Learning , Preoperative Period , Radiomics
3.
Sci Rep ; 14(1): 12081, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38802526

ABSTRACT

Early assessment and accurate staging of liver fibrosis may be of great help for clinical diagnosis and treatment in patients with chronic hepatitis B (CHB). We aimed to identify serum markers and construct a machine learning (ML) model to reliably predict the stage of fibrosis in CHB patients. The clinical data of 618 CHB patients between February 2017 and September 2021 from Zhejiang Provincial People's Hospital were retrospectively analyzed, and these data as a training cohort to build the model. Six ML models were constructed based on logistic regression, support vector machine, Bayes, K-nearest neighbor, decision tree (DT) and random forest by using the maximum relevance minimum redundancy (mRMR) and gradient boosting decision tree (GBDT) dimensionality reduction selected features on the training cohort. Then, the resampling method was used to select the optimal ML model. In addition, a total of 571 patients from another hospital were used as an external validation cohort to verify the performance of the model. The DT model constructed based on five serological biomarkers included HBV-DNA, platelet, thrombin time, international normalized ratio and albumin, with the area under curve (AUC) values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the training cohort were 0.898, 0.891, 0.907 and 0.944, respectively. The AUC values of the DT model for assessment of liver fibrosis stages (F0-1, F2, F3 and F4) in the external validation cohort were 0.906, 0.876, 0.931 and 0.933, respectively. The simulated risk classification based on the cutoff value showed that the classification performance of the DT model in distinguishing hepatic fibrosis stages can be accurately matched with pathological diagnosis results. ML model of five serum markers allows for accurate diagnosis of hepatic fibrosis stages, and beneficial for the clinical monitoring and treatment of CHB patients.


Subject(s)
Biomarkers , Hepatitis B, Chronic , Liver Cirrhosis , Machine Learning , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Hepatitis B, Chronic/blood , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/pathology , Biomarkers/blood , Female , Male , Adult , Middle Aged , Retrospective Studies
4.
Front Aging Neurosci ; 16: 1366780, 2024.
Article in English | MEDLINE | ID: mdl-38685908

ABSTRACT

Objective: Voxel-based morphometry (VBM), surface-based morphometry (SBM), and radiomics are widely used in the field of neuroimage analysis, while it is still unclear that the performance comparison between traditional morphometry and emerging radiomics methods in diagnosing brain aging. In this study, we aimed to develop a VBM-SBM model and a radiomics model for brain aging based on cognitively normal (CN) individuals and compare their performance to explore both methods' strengths, weaknesses, and relationships. Methods: 967 CN participants were included in this study. Subjects were classified into the middle-aged group (n = 302) and the old-aged group (n = 665) according to the age of 66. The data of 360 subjects from the Alzheimer's Disease Neuroimaging Initiative were used for training and internal test of the VBM-SBM and radiomics models, and the data of 607 subjects from the Australian Imaging, Biomarker and Lifestyle, the National Alzheimer's Coordinating Center, and the Parkinson's Progression Markers Initiative databases were used for the external tests. Logistics regression participated in the construction of both models. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, accuracy, positive predictive value, and negative predictive value were used to evaluate the two model performances. The DeLong test was used to compare the differences in AUCs between models. The Spearman correlation analysis was used to observe the correlations between age, VBM-SBM parameters, and radiomics features. Results: The AUCs of the VBM-SBM model and radiomics model were 0.697 and 0.778 in the training set (p = 0.018), 0.640 and 0.789 in the internal test set (p = 0.007), 0.736 and 0.737 in the AIBL test set (p = 0.972), 0.746 and 0.838 in the NACC test set (p < 0.001), and 0.701 and 0.830 in the PPMI test set (p = 0.036). Weak correlations were observed between VBM-SBM parameters and radiomics features (p < 0.05). Conclusion: The radiomics model achieved better performance than the VBM-SBM model. Radiomics provides a good option for researchers who prioritize performance and generalization, whereas VBM-SBM is more suitable for those who emphasize interpretability and clinical practice.

5.
J Cancer Res Clin Oncol ; 150(3): 147, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38512406

ABSTRACT

OBJECTIVE: To construct a multi-region MRI radiomics model for predicting pathological complete response (pCR) in breast cancer (BCa) patients who received neoadjuvant chemotherapy (NACT) and provide a theoretical basis for the peritumoral microenvironment affecting the efficacy of NACT. METHODS: A total of 133 BCa patients who received NACT, including 49 with confirmed pCR, were retrospectively analyzed. The radiomics features of the intratumoral region, peritumoral region, and background parenchymal enhancement (BPE) were extracted, and the most relevant features were obtained after dimensional reduction. Then, combining different areas, multivariate logistic regression analysis was used to select the optimal feature set, and six different machine learning models were used to predict pCR. The optimal model was selected, and its performance was evaluated using receiver operating characteristic (ROC) analysis. SHAP analysis was used to examine the relationship between the features of the model and pCR. RESULTS: For signatures constructed using three individual regions, BPE provided the best predictions of pCR, and the diagnostic performance of the intratumoral and peritumoral regions improved after adding the BPE signature. The radiomics signature from the combination of all the three regions with the XGBoost machine learning algorithm provided the best predictions of pCR based on AUC (training set: 0.891, validation set: 0.861), sensitivity (training set: 0.882, validation set: 0.800), and specificity (training set: 0.847, validation set: 0.84). SHAP analysis demonstrated that LZ_log.sigma.2.0.mm.3D_glcm_ClusterShade_T12 made the greatest contribution to the predictions of this model. CONCLUSION: The addition of the BPE MRI signature improved the prediction of pCR in BCa patients who received NACT. These results suggest that the features of the peritumoral microenvironment are related to the efficacy of NACT.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Neoadjuvant Therapy/methods , Retrospective Studies , Radiomics , Magnetic Resonance Imaging/methods , Machine Learning , Tumor Microenvironment
6.
BMC Med Imaging ; 24(1): 22, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-38245712

ABSTRACT

BACKGROUND: Non-invasive identification of breast cancer (BCa) patients with pathological complete response (pCR) after neoadjuvant chemotherapy (NACT) is critical to determine appropriate surgical strategies and guide the resection range of tumor. This study aimed to examine the effectiveness of a nomogram created by combining radiomics signatures from both intratumoral and derived tissues with clinical characteristics for predicting pCR after NACT. METHODS: The clinical data of 133 BCa patients were analyzed retrospectively and divided into training and validation sets. The radiomics features for Intratumoral, peritumoral, and background parenchymal enhancement (BPE) in the training set were dimensionalized. Logistic regression analysis was used to select the optimal feature set, and a radiomics signature was constructed using a decision tree. The signature was combined with clinical features to build joint models and generate nomograms. The area under curve (AUC) value of receiver operating characteristic (ROC) curve was then used to assess the performance of the nomogram and independent predictors. RESULTS: Among single region, intratumoral had the best predictive value. The diagnostic performance of the intratumoral improved after adding the BPE features. The AUC values of the radiomics signature were 0.822 and 0.82 in the training and validation sets. Multivariate logistic regression analysis revealed that age, ER, PR, Ki-67, and radiomics signature were independent predictors of pCR in constructing a nomogram. The AUC of the nomogram in the training and validation sets were 0.947 and 0.933. The DeLong test showed that the nomogram had statistically significant differences compared to other independent predictors in both the training and validation sets (P < 0.05). CONCLUSION: BPE has value in predicting the efficacy of neoadjuvant chemotherapy, thereby revealing the potential impact of tumor growth environment on the efficacy of neoadjuvant chemotherapy.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Nomograms , Retrospective Studies , Neoadjuvant Therapy , Radiomics
7.
Abdom Radiol (NY) ; 49(1): 117-130, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37819438

ABSTRACT

OBJECTIVE: To construct and validate a multi-dimensional model based on multiple machine leaning algorithms to predict PCLM using multi-parameter magnetic resonance (MRI) sequences with clinical and imaging parameters. METHODS: A total of 148 PDAC retrospectively examined patients were classified as metastatic or non-metastatic based on results at 3 months after surgery. The radiomics features of the primary tumor were extracted from T2WI images, followed by dimension reduction. Then, multiple machine learning methods were used to construct models. Independent predictors were also screened using multifactor logistic regression and a nomogram was constructed in combination with the radiomics model. Area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to assess the accuracy and reliability of the nomogram. RESULTS: The diagnostic efficacy of the radiomics model in the training and test set was 0.822 and 0.803, sensitivity was 0.742 and 0.692, and specificity was 0.792 and 0.875, respectively. The diagnostic efficacy of the nomogram in the training and test set was 0.866 and 0.832. CONCLUSION: A radiomics nomogram based on machine learning improved the accuracy of predicting PCLM and may be useful for early preoperative diagnosis.


Subject(s)
Carcinoma, Pancreatic Ductal , Liver Neoplasms , Pancreatic Neoplasms , Humans , Radiomics , Cohort Studies , Reproducibility of Results , Retrospective Studies , Magnetic Resonance Imaging , Carcinoma, Pancreatic Ductal/diagnostic imaging , Carcinoma, Pancreatic Ductal/surgery , Pancreatic Neoplasms/diagnostic imaging , Pancreatic Neoplasms/surgery , Liver Neoplasms/diagnostic imaging , Liver Neoplasms/surgery , Machine Learning , Magnetic Resonance Spectroscopy
8.
Eur Neurol ; 86(6): 408-417, 2023.
Article in English | MEDLINE | ID: mdl-37926082

ABSTRACT

INTRODUCTION: The aim of the study was to construct and validate a nomogram that combines diffusion tensor imaging (DTI) parameters and clinically relevant features for predicting the progression of mild cognitive impairment (MCI) to Alzheimer's disease (AD). METHOD: A retrospective analysis was conducted on the MRI and clinical data of 121 MCI patients, of whom 32 progressed to AD during a 4-year follow-up period. The MCI patients were divided into training and validation sets at a ratio of 7:3. DTI features were extracted from MCI patient data in the training set, and their dimensionality was reduced to construct a radiomics signature (RS). Then, combining the RS with independent predictors of MCI disease progression, a joint model was constructed, and a nomogram was generated. Finally, the area under the receiver operating characteristic curve (AUC) and decision curve analysis (DCA) were used to evaluate the diagnostic and clinical efficacy of the nomogram based on the data from the validation set. RESULT: The AUCs of the RS in the training and validation sets were 0.81 and 0.84, with sensitivities of 0.87 and 0.78 and specificities of 0.71 and 0.81, respectively. Multiple logistic regression analysis showed that the RS, clinical dementia rating scale score, and Alzheimer's disease assessment scale score were the independent predictors of progression and were thus used to construct the nomogram. The AUCs of the nomogram in the training and validation sets were 0.89 and 0.91, respectively, with sensitivities of 0.78 and 0.89 and specificities of 0.90 and 0.88, respectively. DCA showed that the nomogram was the most valuable model for predicting the progression of MCI to AD and that it provided greater net benefits than other analysed models. CONCLUSION: Changes in white matter fibre bundles can serve as predictive imaging markers for MCI disease progression, and the combination of white matter DTI features and relevant clinical features can be used to construct a nomogram with important predictive value for MCI disease progression.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Diffusion Tensor Imaging , Nomograms , Retrospective Studies , Cognitive Dysfunction/diagnostic imaging , Disease Progression
9.
Cancer Imaging ; 23(1): 88, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723592

ABSTRACT

BACKGROUND: The current study aimed to construct and validate a magnetic resonance imaging (MRI)-based radiomics nomogram to predict tumor protein p53 gene status in rectal cancer patients using machine learning. METHODS: Clinical and imaging data from 300 rectal cancer patients who underwent radical resections were included in this study, and a total of 166 patients with p53 mutations according to pathology reports were included in these patients. These patients were allocated to the training (n = 210) or validation (n = 90) cohorts (7:3 ratio) according to the examination time. Using the training data set, the radiomic features of primary tumor lesions from T2-weighted images (T2WI) of each patient were analyzed by dimensionality reduction. Multivariate logistic regression was used to screen predictive features, which were combined with a radiomics model to construct a nomogram to predict p53 gene status. The accuracy and reliability of the nomograms were assessed in both training and validation data sets using receiver operating characteristic (ROC) curves. RESULTS: Using the radiomics model with the training and validation cohorts, the diagnostic efficacies were 0.828 and 0.795, the sensitivities were 0.825 and 0.891, and the specificities were 0.722 and 0.659, respectively. Using the nomogram with the training and validation data sets, the diagnostic efficacies were 0.86 and 0.847, the sensitivities were 0.758 and 0.869, and the specificities were 0.833 and 0.75, respectively. CONCLUSIONS: The radiomics nomogram based on machine learning was able to predict p53 gene status and facilitate preoperative molecular-based pathological diagnoses.


Subject(s)
Nomograms , Rectal Neoplasms , Humans , Reproducibility of Results , Tumor Suppressor Protein p53/genetics , Magnetic Resonance Imaging , Machine Learning , Mutation , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/genetics
10.
Aging Clin Exp Res ; 35(8): 1721-1730, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37405620

ABSTRACT

PURPOSE: To establish a model for predicting mild cognitive impairment (MCI) progression to Alzheimer's disease (AD) using morphological features extracted from a joint analysis of voxel-based morphometry (VBM) and surface-based morphometry (SBM). METHODS: We analyzed data from 121 MCI patients from the Alzheimer's Disease Neuroimaging Initiative, 32 of whom progressed to AD during a 4-year follow-up period and were classified as the progression group, while the remaining 89 were classified as the non-progression group. Patients were divided into a training set (n = 84) and a testing set (n = 37). Morphological features measured by VBM and SBM were extracted from the cortex of the training set and dimensionally reduced to construct morphological biomarkers using machine learning methods, which were combined with clinical data to build a multimodal combinatorial model. The model's performance was evaluated using receiver operating characteristic curves on the testing set. RESULTS: The Alzheimer's Disease Assessment Scale (ADAS) score, apolipoprotein E (APOE4), and morphological biomarkers were independent predictors of MCI progression to AD. The combinatorial model based on the independent predictors had an area under the curve (AUC) of 0.866 in the training set and 0.828 in the testing set, with sensitivities of 0.773 and 0.900 and specificities of 0.903 and 0.747, respectively. The number of MCI patients classified as high-risk for progression to AD was significantly different from those classified as low-risk in the training set, testing set, and entire dataset, according to the combinatorial model (P < 0.05). CONCLUSION: The combinatorial model based on cortical morphological features can identify high-risk MCI patients likely to progress to AD, potentially providing an effective tool for clinical screening.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Neuroimaging/methods , Machine Learning , Biomarkers , Disease Progression , Magnetic Resonance Imaging/methods
11.
BMC Cancer ; 23(1): 365, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37085830

ABSTRACT

OBJECTIVE: In this study, we aimed to investigate the predictive efficacy of magnetic resonance imaging (MRI) radiomics features at different time points of neoadjuvant therapy for rectal cancer in patients with pathological complete response (pCR). Furthermore, we aimed to develop and validate a radiomics space-time model (RSTM) using machine learning for artificial intelligence interventions in predicting pCR in patients. METHODS: Clinical and imaging data of 83 rectal cancer patients were retrospectively analyzed, and the patients were classified as pCR and non-pCR patients according to their postoperative pathological results. All patients received one MRI examination before and after neoadjuvant therapy to extract radiomics features, including pre-treatment, post-treatment, and delta features. Delta features were defined by the ratio of the difference between the pre- and the post-treatment features to the pre-treatment feature. After feature dimensionality reduction based on the above three feature types, the RSTM was constructed using machine learning methods, and its performance was evaluated using the area under the curve (AUC). RESULTS: The AUC values of the individual basic models constructed by pre-treatment, post-treatment, and delta features were 0.771, 0.681, and 0.871, respectively. Their sensitivity values were 0.727, 0.864, and 0.909, respectively, and their specificity values were 0.803, 0.492, and 0.656, respectively. The AUC, sensitivity, and specificity values of the combined basic model constructed by combining pre-treatment, post-treatment, and delta features were 0.901, 0.909, and 0.803, respectively. The AUC, sensitivity, and specificity values of the RSTM constructed using the K-Nearest Neighbor (KNN) classifier on the basis of the combined basic model were 0.944, 0.871, and 0.983, respectively. The Delong test showed that the performance of RSTM was significantly different from that of pre-treatment, post-treatment, and delta models (P < 0.05) but not significantly different from the combined basic model of the three (P > 0.05). CONCLUSIONS: The RSTM constructed using the KNN classifier based on the combined features of before and after neoadjuvant therapy and delta features had the best predictive efficacy for pCR of neoadjuvant therapy. It may emerge as a new clinical tool to assist with individualized management of rectal cancer patients.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Neoadjuvant Therapy/methods , Artificial Intelligence , Retrospective Studies , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Magnetic Resonance Imaging/methods , Machine Learning
12.
J Nucl Cardiol ; 30(5): 1838-1850, 2023 10.
Article in English | MEDLINE | ID: mdl-36859595

ABSTRACT

BACKGROUND: This study aimed to predict myocardial ischemia (MIS) by constructing models with imaging features, CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics based on coronary computed tomography angiography (CCTA). METHODS AND RESULTS: This study included 96 patients who underwent CCTA and single photon emission computed tomography-myocardial perfusion imaging (SPECT-MPI). According to SPECT-MPI results, there were 72 vessels with MIS in corresponding supply area and 105 vessels with no-MIS. The conventional model [lesion length (LL), MDS (maximum stenosis diameter × 100% / reference vessel diameter), MAS (maximum stenosis area × 100% / reference vessel area) and CT value], radiomics model (radiomics features), and multi-faceted model (all features) were constructed using support vector machine. Conventional and radiomics models showed similar predictive efficacy [AUC: 0.76, CI 0.62-0.90 vs. 0.74, CI 0.61-0.88; p > 0.05]. Adding pFAI to the conventional model showed better predictive efficacy than adding CT-FFR (AUC: 0.88, CI 0.79-0.97 vs. 0.80, CI 0.68-0.92; p < 0.05). Compared with conventional and radiomics model, the multi-faceted model showed the highest predictive efficacy (AUC: 0.92, CI 0.82-0.98, p < 0.05). CONCLUSION: pFAI is more effective for predicting MIS than CT-FFR. A multi-faceted model combining imaging features, CT-FFR, pFAI, and radiomics is a potential diagnostic tool for MIS.


Subject(s)
Coronary Artery Disease , Coronary Stenosis , Fractional Flow Reserve, Myocardial , Myocardial Ischemia , Humans , Computed Tomography Angiography/methods , Constriction, Pathologic , Coronary Angiography/methods , Predictive Value of Tests , Severity of Illness Index , Coronary Artery Disease/diagnostic imaging , Tomography, X-Ray Computed , Myocardial Ischemia/diagnostic imaging
13.
Acad Radiol ; 30(9): 1874-1884, 2023 09.
Article in English | MEDLINE | ID: mdl-36587998

ABSTRACT

RATIONALE AND OBJECTIVES: To build a model using white-matter radiomics features on positron-emission tomography (PET) and machine learning methods to predict progression from mild cognitive impairment (MCI) to Alzheimer disease (AD). MATERIALS AND METHODS: We analyzed the data of 341 MCI patients from the Alzheimer's Disease Neuroimaging Initiative, of whom 102 progressed to AD during an 8-year follow-up. The patients were divided into the training (238 patients) and test groups (103 patients). PET-based radiomics features were extracted from the white matter in the training group, and dimensionally reduced to construct a psychoradiomics signature (PS), which was combined with multimodal data using machine learning methods to construct an integrated model. Model performance was evaluated using receiver operating characteristic curves in the test group. RESULTS: Clinical Dementia Rating (CDR) scores, Alzheimer's Disease Assessment Scale (ADAS) scores, and PS independently predicted MCI progression to AD on multivariate logistic regression. The areas under the curve (AUCs) of the CDR, ADAS and PS in the training and test groups were 0.683, 0.755, 0.747 and 0.737, 0.743, 0.719 respectively, and were combined using a support vector machine to construct an integrated model. The AUC of the integrated model in the training and test groups was 0.868 and 0.865, respectively (sensitivity, 0.873 and 0.839, respectively; specificity, 0.784 and 0.806, respectively). The AUCs of the integrated model significantly differed from those of other predictors in both groups (p < 0.05, Delong test). CONCLUSION: Our psych radiomics signature based on white-matter PET data predicted MCI progression to AD. The integrated model built using multimodal data and machine learning identified MCI patients at a high risk of progression to AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , White Matter , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/psychology , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/psychology , White Matter/diagnostic imaging , Machine Learning , Humans , Positron-Emission Tomography , Neuroimaging , Fluorodeoxyglucose F18 , Radiopharmaceuticals , Disease Progression , Male , Female , Aged , Aged, 80 and over
14.
Diagnostics (Basel) ; 13(2)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36673079

ABSTRACT

Objectives: To establish and verify radiomics models based on multiparametric MRI for preoperatively identifying the microsatellite instability (MSI) status of rectal cancer (RC) by comparing different machine learning algorithms. Methods: This retrospective study enrolled 383 (training set, 268; test set, 115) RC patients between January 2017 and June 2022. A total of 4148 radiomics features were extracted from multiparametric MRI, including T2-weighted imaging, T1-weighted imaging, apparent diffusion coefficient, and contrast-enhanced T1-weighted imaging. The analysis of variance, correlation test, univariate logistic analysis, and a gradient-boosting decision tree were used for the dimension reduction. Logistic regression, Bayes, support vector machine (SVM), K-nearest neighbor (KNN), and tree machine learning algorithms were used to build different radiomics models. The relative standard deviation (RSD) and bootstrap method were used to quantify the stability of these five algorithms. Then, predictive performances of different models were assessed using area under curves (AUCs). The performance of the best radiomics model was evaluated using calibration and discrimination. Results: Among these 383 patients, the prevalence of MSI was 14.62% (56/383). The RSD value of logistic regression algorithm was the lowest (4.64%), followed by Bayes (5.44%) and KNN (5.45%), which was significantly better than that of SVM (19.11%) and tree (11.94%) algorithms. The radiomics model based on logistic regression algorithm performed best, with AUCs of 0.827 and 0.739 in the training and test sets, respectively. Conclusions: We developed a radiomics model based on the logistic regression algorithm, which could potentially be used to facilitate the individualized prediction of MSI status in RC patients.

15.
Front Cardiovasc Med ; 10: 1282768, 2023.
Article in English | MEDLINE | ID: mdl-38179506

ABSTRACT

Objective: To develop and validate a hybrid model incorporating CT-fractional flow reserve (CT-FFR), pericoronary fat attenuation index (pFAI), and radiomics signatures for predicting progression of white matter hyperintensity (WMH). Methods: A total of 226 patients who received coronary computer tomography angiography (CCTA) and brain magnetic resonance imaging from two hospitals were divided into a training set (n = 116), an internal validation set (n = 30), and an external validation set (n = 80). Patients who experienced progression of WMH were identified from subsequent MRI results. We calculated CT-FFR and pFAI from CCTA images using semi-automated software, and segmented the pericoronary adipose tissue (PCAT) and myocardial ROI. A total of 1,073 features were extracted from each ROI, and were then refined by Elastic Net Regression. Firstly, different machine learning algorithms (Logistic Regression [LR], Support Vector Machine [SVM], Random Forest [RF], k-nearest neighbor [KNN] and eXtreme Gradient Gradient Boosting Machine [XGBoost]) were used to evaluate the effectiveness of radiomics signatures for predicting WMH progression. Then, the optimal machine learning algorithm was used to compare the predictive performance of individual and hybrid models based on independent risk factors of WMH progression. Receiver operating characteristic (ROC) curve analysis, calibration and decision curve analysis were used to evaluate predictive performance and clinical value of the different models. Results: CT-FFR, pFAI, and radiomics signatures were independent predictors of WMH progression. Based on the machine learning algorithms, the PCAT signatures led to slightly better predictions than the myocardial signatures and showed the highest AUC value in the XGBoost algorithm for predicting WMH progression (AUC: 0.731 [95% CI: 0.603-0.838] vs.0.711 [95% CI: 0.584-0.822]). In addition, pFAI provided better predictions than CT-FFR (AUC: 0.762 [95% CI: 0.651-0.863] vs. 0.682 [95% CI: 0.547-0.799]). A hybrid model that combined CT-FFR, pFAI, and two radiomics signatures provided the best predictions of WMH progression [AUC: 0.893 (95%CI: 0.815-0.956)]. Conclusion: pFAI was more effective than CT-FFR, and PCAT signatures were more effective than myocardial signatures in predicting WMH progression. A hybrid model that combines pFAI, CT-FFR, and two radiomics signatures has potential use for identifying WMH progression.

16.
JMIR Med Inform ; 10(7): e34504, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35857360

ABSTRACT

BACKGROUND: Emergency department (ED) overcrowding is a concerning global health care issue, which is mainly caused by the uncertainty of patient arrivals, especially during the pandemic. Accurate forecasting of patient arrivals can allow health resource allocation in advance to reduce overcrowding. Currently, traditional data, such as historical patient visits, weather, holiday, and calendar, are primarily used to create forecasting models. However, data from an internet search engine (eg, Google) is less studied, although they can provide pivotal real-time surveillance information. The internet data can be employed to improve forecasting performance and provide early warning, especially during the epidemic. Moreover, possible nonlinearities between patient arrivals and these variables are often ignored. OBJECTIVE: This study aims to develop an intelligent forecasting system with machine learning models and internet search index to provide an accurate prediction of ED patient arrivals, to verify the effectiveness of the internet search index, and to explore whether nonlinear models can improve the forecasting accuracy. METHODS: Data on ED patient arrivals were collected from July 12, 2009, to June 27, 2010, the period of the 2009 H1N1 pandemic. These included 139,910 ED visits in our collaborative hospital, which is one of the biggest public hospitals in Hong Kong. Traditional data were also collected during the same period. The internet search index was generated from 268 search queries on Google to comprehensively capture the information about potential patients. The relationship between the index and patient arrivals was verified by Pearson correlation coefficient, Johansen cointegration, and Granger causality. Linear and nonlinear models were then developed with the internet search index to predict patient arrivals. The accuracy and robustness were also examined. RESULTS: All models could accurately predict patient arrivals. The causality test indicated internet search index as a strong predictor of ED patient arrivals. With the internet search index, the mean absolute percentage error (MAPE) and the root mean square error (RMSE) of the linear model reduced from 5.3% to 5.0% and from 24.44 to 23.18, respectively, whereas the MAPE and RMSE of the nonlinear model decreased even more, from 3.5% to 3% and from 16.72 to 14.55, respectively. Compared with each other, the experimental results revealed that the forecasting system with extreme learning machine, as well as the internet search index, had the best performance in both forecasting accuracy and robustness analysis. CONCLUSIONS: The proposed forecasting system can make accurate, real-time prediction of ED patient arrivals. Compared with the static traditional variables, the internet search index significantly improves forecasting as a reliable predictor monitoring continuous behavior trend and sudden changes during the epidemic (P=.002). The nonlinear model performs better than the linear counterparts by capturing the dynamic relationship between the index and patient arrivals. Thus, the system can facilitate staff planning and workflow monitoring.

17.
Front Oncol ; 12: 828904, 2022.
Article in English | MEDLINE | ID: mdl-35480114

ABSTRACT

Objectives: To compare the predictive performance of different radiomics signatures from multiparametric magnetic resonance imaging (mpMRI), including four sequences when used individually or combined, and to establish and validate an optimal nomogram for predicting perineural invasion (PNI) in rectal cancer (RC) patients. Methods: Our retrospective study included 279 RC patients without preoperative antitumor therapy (194 in the training dataset and 85 in the test dataset) who underwent preoperative mpMRI scan between January 2017 and January 2021. Among them, 72 cases were PNI-positive. Then, clinical and radiological variables were collected, including carcinoembryonic antigen (CEA), radiological tumour stage (T1-4), lymph node stage (N0-2) and so on. Quantitative radiomics features were extracted and selected from oblique axial T2-weighted imaging (T2WI), T1-weighted imaging (T1WI), apparent diffusion coefficient (ADC), and enhanced T1WI (T1CE) sequences. The clinical model was constructed by integrating the final selected clinical and radiological variables. The radiomics signatures included four single-sequence signatures and one fusion signature were built using the respective remaining optimized features. And the nomogram was constructed based on the independent predictors by using multivariable logistic regression. The area under curve (AUC), DeLong test, calibration curve, and decision curve analysis (DCA) were used to evaluate the performance. Results: Ultimately, 20 radiomics features were retained from the four sequences-T1WI (n = 4), T2WI (n = 5), ADC (n = 5), and T1CE (n = 6)-to construct four single-sequence radiomics signatures and one fusion radiomics signature. The fusion radiomics signature performed better than four single-sequence radiomics signatures and clinical model (AUCs of 0.835 and 0.773 vs. 0.680-0.737 and 0.666-0.709 in the training and test datasets, respectively). The nomogram constructed by incorporating CEA, tumour stage and rad-score performed best, with AUCs of 0.869 and 0.864 in the training and test datasets, respectively. Delong test showed that the nomogram was significantly different from the clinical model and four single-sequence radiomics signatures (P < 0.05). Moreover, calibration curves demonstrated good agreement, and DCA highlighted benefits of the nomogram. Conclusions: The comprehensive nomogram can preoperatively and noninvasively predict PNI status, provide a convenient and practical tool for treatment strategy, and help optimize individualized clinical decision-making in RC patients.

18.
Food Chem ; 372: 131322, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34818740

ABSTRACT

In this work, based on a specific antibody was obtained from the Protein Data Bank (PDB), a library of the specific peptides of aflatoxin B1 (AFB1) was constructed by combining key amino acids, amino acid mutations and molecular docking. Then, the porous gold nanoparticles (porous AuNPs) were fabricated on the surface of a glassy carbon electrode (GCE). A novel, sensitive and no-label signal immunosensor was developed by signal enhancement with the specific peptide as the recognition element for the detection of AFB1 in cereals. Under the optimal conditions, the limit of detection (S/N = 3) was 9.4 × 10-4 µg·L-1, and the linear range was 0.01 µg·L-1 to 20 µg·L-1. The recovery results were 88.4%∼102.0%, which indicated an excellent accuracy. This sensor is an ideal candidate for screening the peptides of AFB1, and a novel immunosensor was used to detect AFB1 in cereals.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Aflatoxin B1/analysis , Electrochemical Techniques , Gold , Immunoassay , Limit of Detection , Molecular Docking Simulation , Peptides
19.
Food Res Int ; 141: 110131, 2021 03.
Article in English | MEDLINE | ID: mdl-33641998

ABSTRACT

The main issue remains finding a nitrite alternative able to provide its multiple functions. Flos Sophorae exerts antioxidant and prebiotic actions, chili pepper has potent coloring capacity, thus this study investigated whether combination of Flos Sophorae and chili pepper could address the multiple activities of nitrite in Chinese sausages. Dry-fermented sausages were prepared: control and four treatments added with 150 mg/kg sodium nitrite (Nit), 0.2% Flos Sophorae (FS), 1% chili pepper (CP), and combination of 0.2% Flos Sophorae and 1% chili pepper (FS + CP). Results indicated that FS, CP and FS + CP had higher moisture, antioxidant activity and numbers of beneficial Staphylococcus and yeasts Candida, and lower numbers of Escherichia coli and harmful fungi, while FS had lower redness and harder texture than control. Their combination inhibited the declines of capsanthin and antioxidant capacity with ripening time, further improved microbiological communities compared with CP, and resulted in higher redness, similar color score and bacterial community, less lipid oxidation and softer texture compared with Nit. These results suggested that Flos Sophorae in combination with chili pepper could replace the nitrite's contribution to red curing color and microbiological communities, and effectively hinder lipid oxidation in Chinese sausages.


Subject(s)
Capsicum , Microbiota , Antioxidants , China , Nitrites
20.
Drug Des Devel Ther ; 14: 4189-4203, 2020.
Article in English | MEDLINE | ID: mdl-33116407

ABSTRACT

INTRODUCTION: Osteoporosis is a metabolic bone disease characterized by reduced bone quantity and microstructure, typically owing to increased osteoclastogenesis and/or enhanced osteoclastic bone resorption, resulting in uncontrolled bone loss, which primarily affects postmenopausal women. In consideration of the severe side effects of current drugs for osteoporosis, new safe and effective medications are necessary. Pristimerin (Pri), a quinone methide triterpene extracted from Celastraceae and Hippocrateaceae members, exhibits potent antineoplastic and anti-inflammatory effects. However, its effect on osteoclasts remains unknown. MATERIALS AND METHODS: We evaluated the anti-osteoclastogenic and anti-resorptive effect of Pri on bone marrow-derived osteoclasts and its underlying mechanism in vitro. In addition, the protective effect of Pri on ovariectomy model was also explored in vivo. RESULTS: In vitro, Pri inhibited osteoclast differentiation and mature osteoclastic bone resorption in a time- and dose-dependent manner. Further, Pri suppressed the expression of osteoclast-related genes and the activation of key proteins. Pri also inhibited the early activation of ERK, JNK MAPK, and AKT signaling pathways in bone marrow-derived macrophages (BMMs), ultimately inhibiting the induction and activation of the crucial osteoclast transcriptional factor nuclear factor of activated T-cell cytoplasmic 1 (NFATc1). In vivo, consistent with our in vitro data, Pri clearly prevented ovariectomy-induced bone loss. CONCLUSION: Our data showed that Pri inhibits the differentiation and activation of osteoclasts in vitro and in vivo, and could be a promising candidate for treating osteoporosis.


Subject(s)
Bone Density Conservation Agents/pharmacology , Bone Resorption/prevention & control , Cell Differentiation/drug effects , Osteoclasts/drug effects , Osteoporosis, Postmenopausal/prevention & control , Ovariectomy , Pentacyclic Triterpenes/pharmacology , Animals , Bone Resorption/diagnostic imaging , Dose-Response Relationship, Drug , Female , Humans , MAP Kinase Signaling System/drug effects , Macrophages/drug effects , Mice , Mice, Inbred C57BL , NFATC Transcription Factors/drug effects , Osteogenesis/drug effects , Signal Transduction/drug effects , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...