Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Sci Total Environ ; 927: 172289, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599405

ABSTRACT

Cu, as an essential and toxic element, has gained widespread attention. Both salinity and dissolved organic carbon (DOC) are known to influence Cu toxicity in marine organisms. However, the intricate interplay between these factors and their specific influence on Cu toxicity remains ambiguous. So, this study conducted toxicity tests of Cu on Oryzias melastigma. The experiments involved three salinity levels (10, 20, and 30 ppt) and three DOC levels (0, 1, and 5 mg/L) to comprehensively investigate the underlying mechanisms of toxicity. The complex toxic effects were analyzed by mortality, NKA activity, net Na+ flux and Cu bioaccumulation in O. melastigma. The results indicate that Cu toxicity is notably influenced by both DOC and salinity. Interestingly, the discernible variation in Cu toxicity across different DOC levels diminishes as salinity levels increase. The presence of DOC enhances the impact of salinity on Cu toxicity, especially at higher Cu concentrations. Additionally, Visual MINTEQ was utilized to elucidate the chemical composition of Cu, revealing that DOC had a significant impact on Cu forms. Furthermore, we observed that fluctuations in salinity lead to the inhibition of Na+/K+-ATPase (NKA) activity, subsequently hindering the inflow of Na+. The effects of salinity and DOC on the bioaccumulation of copper were not significant. The influence of salinity on Cu toxicity is mainly through its effect on the osmotic regulation and biophysiology of O. melastigma. Additionally, DOC plays a crucial role in the different forms of Cu. Moreover, DOC-Cu complexes can be utilized by organisms. This study contributes to understanding the mechanism of copper's biological toxicity in intricate marine environments and serves as a valuable reference for developing marine water quality criteria for Cu.


Subject(s)
Carbon , Copper , Oryzias , Salinity , Water Pollutants, Chemical , Copper/toxicity , Copper/metabolism , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/metabolism , Carbon/metabolism , Oryzias/metabolism , Oryzias/physiology , Bioaccumulation
2.
Transl Res ; 270: 13-23, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38548174

ABSTRACT

BACKGROUND: Post-ischemic angiogenesis is critical for perfusion recovery and tissue repair. ELABELA (ELA) plays an essential role in embryonic heart development and vasculogenesis. However, the mechanism of ELA on post-ischemic angiogenesis is poorly characterized. METHODS: We first assessed ELA expression after hind limb ischemia (HLI) in mice. We then established a HLI model in tamoxifen-inducible endothelial-ELA-specific knockout mice (ELAECKO) and assessed the rate of perfusion recovery, capillary density, and VEGFR2 pathway. Knockdown of ELA with lentivirus or siRNA and exogenous addition of ELA peptides were employed to analyze the effects of ELA on angiogenic capacity and VEGFR2 pathway in endothelial cells in vitro. The serum levels of ELA in healthy people and patients with type 2 diabetes mellitus (T2DM) and diabetic foot ulcer (DFU) were detected by a commercial ELISA kit. RESULTS: In murine HLI models, ELA was significantly up-regulated in the ischemic hindlimb. Endothelial-specific deletion of ELA impaired perfusion recovery and angiogenesis. In physiologic conditions, no significant difference in VEGFR2 expression was found between ELAECKO mice and ELAWT mice. After ischemia, the expression of VEGFR2, p-VEGFR2, and p-AKT was significantly lower in ELAECKO mice than in ELAWT mice. In cellular experiments, the knockdown of ELA inhibited endothelial cell proliferation and tube formation, and the addition of ELA peptides promoted proliferation and tube formation. Mechanistically, ELA upregulated the expression of VEGFR2, p-VEGFR2, and p-AKT in endothelial cells under hypoxic conditions. In clinical investigations, DFU patients had significantly lower serum levels of ELA compared to T2DM patients. CONCLUSION: Our results indicated that endothelial ELA is a positive regulator of post-ischemic angiogenesis via upregulating VEGFR2 expression. Targeting ELA may be a potential therapeutic option for peripheral arterial diseases.

3.
J Contam Hydrol ; 261: 104305, 2024 02.
Article in English | MEDLINE | ID: mdl-38301313

ABSTRACT

Initial flush management is an effective measure to control non-point source pollution (NPSP) in storm runoff. However, determining the parameter of the initial flush in different areas may pose challenges in storm runoff management strategies. To address this issue, Erhai Lake in China, Yunnan-Guizhou Plateau, was selected as an example for the study. Erhai Lake is a typical mesotrophic lake with the profound influence of NPSP. The NPSP control strategy in this area will provide a valuable reference for other lakes. In 2021, 289 storm events and 190 ditchwater samples were detected around Erhai Lake. The average flow in the ditches ranged from 0.004 to 0.147 m3/s, the instant total nitrogen (TN) concentration ranged from 0.28 to 91.43 mg/L, and the instant total phosphorus (TP) concentration ranged from 0.26 to 7.35 mg/L in the storm events. It was found that the concentration of pollutants was lower than expected in the initial flush period. Instead, the event mean concentrations of TN and TP were 9.3 and 2.1 times higher than in the wet seasons, showing high nutrient concentration levels throughout the entire rainfall period. To manage storm runoff effectively, a flow-processes-division method was proposed to analyze the inflow condition and pollutant removal rate in different runoff periods. The peak flow interception strategy was recommended as the optimal stormwater management plan, as it showed the highest inflow conditions and 50% pollutant removal rate. Considering the need to reduce the constant flush of stormwater runoff, it is essential to establish a healthy water cycle system to alleviate NPSP and raise the Erhai water level. The storm runoff management method can serve as a practical tool for lake areas that do not exhibit initial flush characteristics.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Environmental Monitoring/methods , Water Pollutants, Chemical/analysis , Rain , China , Water Movements , Phosphorus , Nitrogen/analysis
4.
J Ultrasound Med ; 43(5): 863-872, 2024 May.
Article in English | MEDLINE | ID: mdl-38240408

ABSTRACT

OBJECTIVES: To investigate the application value of shear wave dispersion (SWD) in healthy adults with the lumbar multifidus muscle (LMM), to determine the range of normal reference values, and to analyze the influences of factors on the parameter. METHODS: Ninety-five healthy volunteers participated in the study, from whom 2-dimensional, shear wave elastography (SWE), and SWD images of the bilateral LMM were acquired in three positions (prone, standing, and anterior flexion). Subcutaneous fat thickness (SFH), SWE velocity, and SWD slope were measured accordingly for analyses. RESULTS: The mean SWD slope of the bilateral LMM in the prone position was as follows: left: 14.8 ± 3.1 (m/second)/kHz (female) and 13.0 ± 2.5 (m/second)/kHz (male); right: 14.8 ± 3.7 (m/second)/kHz (female) and 14.2 ± 3.4 (m/second)/kHz (male). In the prone position, there was a weak negative correlation between the bilateral LMM SWD slope of activity level 2 and level 1 (ß = -1.5 (2 versus 1, left), -1.9 (2 versus 1, right), all P < .05), and between the left SWD slope of activity level 3 and level 1 (ß = -2.3 [3 versus 1, left], P < .05). The correlation between SWE velocity and SWD slope value changed with the position: there was a weak positive correlation in the prone position (r = 0.3 [left], 0.37 [right], both P < .05), and a moderate positive correlation in the standing and anterior flexed positions (r = 0.49-0.74, both P < .001). SFH was moderately negatively correlated with bilateral SWD slope values in the anterior flexion (left: r = -0.4, P = .01; right: r = -0.7, P < .01). CONCLUSIONS: SWD imaging can be used as an adjunct tool to aid in the assessment of viscosity in LMM. Further, activity level, and position are influencing factors that should be considered in clinical practice.


Subject(s)
Elasticity Imaging Techniques , Paraspinal Muscles , Adult , Humans , Male , Female , Paraspinal Muscles/diagnostic imaging , Elasticity Imaging Techniques/methods , Lumbosacral Region/diagnostic imaging , Healthy Volunteers , Viscosity
5.
Ultrasound Med Biol ; 50(2): 304-314, 2024 02.
Article in English | MEDLINE | ID: mdl-38044200

ABSTRACT

OBJECTIVE: Ultrasound (US) examination has unique advantages in diagnosing carpal tunnel syndrome (CTS), although identification of the median nerve (MN) and diagnosis of CTS depend heavily on the expertise of examiners. In the aim of alleviating this problem, we developed a one-stop automated CTS diagnosis system (OSA-CTSD) and evaluated its effectiveness as a computer-aided diagnostic tool. METHODS: We combined real-time MN delineation, accurate biometric measurements and explainable CTS diagnosis into a unified framework, called OSA-CTSD. We then collected a total of 32,301 static images from US videos of 90 normal wrists and 40 CTS wrists for evaluation using a simplified scanning protocol. RESULTS: The proposed model exhibited better segmentation and measurement performance than competing methods, with a Hausdorff distance (95th percentile) score of 7.21 px, average symmetric surface distance score of 2.64 px, Dice score of 85.78% and intersection over union score of 76.00%. In the reader study, it exhibited performance comparable to the average performance of experienced radiologists in classifying CTS and outperformed inexperienced radiologists in terms of classification metrics (e.g., accuracy score 3.59% higher and F1 score 5.85% higher). CONCLUSION: Diagnostic performance of the OSA-CTSD was promising, with the advantages of real-time delineation, automation and clinical interpretability. The application of such a tool not only reduces reliance on the expertise of examiners but also can help to promote future standardization of the CTS diagnostic process, benefiting both patients and radiologists.


Subject(s)
Carpal Tunnel Syndrome , Deep Learning , Humans , Carpal Tunnel Syndrome/diagnostic imaging , Neural Conduction/physiology , Median Nerve/diagnostic imaging , Ultrasonography
6.
Front Plant Sci ; 14: 1101766, 2023.
Article in English | MEDLINE | ID: mdl-37077639

ABSTRACT

Oiltea-camellia (C. oleifera) is a widely cultivated woody oil crop in Southern China and Southeast Asia. The genome of oiltea-camellia was very complex and not well explored. Recently, genomes of three oiltea-camellia species were sequenced and assembled, multi-omic studies of oiltea-camellia were carried out and provided a better understanding of this important woody oil crop. In this review, we summarized the recent assembly of the reference genomes of oiltea-camellia, genes related to economic traits (flowering, photosynthesis, yield and oil component), disease resistance (anthracnose) and environmental stress tolerances (drought, cold, heat and nutrient deficiency). We also discussed future directions of integrating multiple omics for evaluating genetic resources and mining key genes of important traits, and the application of new molecular breeding and gene editing technologies to accelerate the breeding process of oiltea-camellia.

7.
BMC Med ; 21(1): 94, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36927541

ABSTRACT

BACKGROUND: Previous studies have shown that monotherapy with apatinib, an oral tyrosine kinase inhibitor, has promising efficacy for treating recurrent or metastatic (RM) nasopharyngeal carcinoma (NPC) patients. In this study, we aimed to assess the efficacy and safety of apatinib combined with capecitabine as a second-line therapy or beyond for treating RM-NPC patients who failed the first-line platinum-based chemotherapy. METHODS: In this single-arm, phase II study, we enrolled RM-NPC patients who had at least one measurable lesion according to the Response Evaluation Criteria in Solid Tumors (RECIST v1.1). The sample size was determined using Simon's two-stage design. All patients were administered with apatinib 500 mg once daily and capecitabine 1000 mg/m2 twice per day on days 1-14 of each 21-day cycle. The primary endpoint was the objective response rate (ORR), and the secondary endpoints comprised disease control rate (DCR), duration of response (DoR), progression-free survival (PFS), overall survival (OS), and safety. RESULTS: We enrolled 64 patients from September 2018 to August 2020. The ORR and DCR were 39.1% (95% CI, 27.1-52.1) and 85.9% (95% CI, 75.0-93.4), respectively. The median DoR was 14.4 months (95% CI, 7.8-21.0). As of April 20, 2021, the median follow-up duration was 12.0 months. The median PFS was 7.5 months (95% CI, 5.0-10.0) and the median OS was 15.7 months (95% CI, 11.3-20.1). The most common toxicities of any grade were anemia (75.0%), hand-foot syndrome (65.6%), and proteinuria (64.0%). Grade 3-4 toxicities were observed in 36 (56.3%) patients, with hypertension (14.1%), mucositis (12.4%), and fatigue (10.9%) most commonly observed. CONCLUSIONS: Apatinib plus capecitabine shows promising efficacy as a second-line treatment option in pretreated platinum-refractory RM-NPC patients. Dose selection of this combination needs further investigation considering the toxicity. TRIAL REGISTRATION: Chi-CTR1800017229.


Subject(s)
Nasopharyngeal Neoplasms , Humans , Capecitabine/adverse effects , Prospective Studies , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Neoplasms/drug therapy
8.
Environ Sci Pollut Res Int ; 30(12): 34649-34668, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36515872

ABSTRACT

As a complex system under the joint action of man and nature, land use/cover directly or indirectly affects the environmental quality of the freshwater ecosystem. Studying the response of water environment quality to land use/cover change was significant to accurately simulate lake water quality and effectively enhance the management level. As an empirical model, the classical export coefficient model has been widely used and developed in agricultural non-point source pollution research because of its simple structure and convenient application. However, it assumes that the export coefficient of a particular type of land use/cover was constant, ignoring the influence of surface runoff and interception on the output intensity of pollutants in pollutant migration. This study improved the classical export coefficient model by adding factors such as precipitation, surface cover, and topography, evaluated the contribution of land use/cover to total nitrogen load into the lake in Dianchi Lake Basin, and applied the pollution assessment results to the identification of watershed environmental risk areas. The results showed that the improved export coefficient model could better simulate the relationship between land use/cover and total nitrogen load into Dianchi Lake from the basin. At the same time, spatial characteristics of the total nitrogen load contribution of the terrestrial could be represented. The high-risk areas in the basin were mainly cultivated land and construction areas with low vegetation coverage around lakes or downstream. The contribution per unit area to the TN load into the lake from areas with a high risk was 14.28 t/km2, which was 3.47 times that of medium-high-risk areas and 52.28 times that of the medium-risk area. Land use control measures in high-risk areas in the basin should be further strengthened, especially in the lakeside zone.


Subject(s)
Environmental Pollutants , Water Pollutants, Chemical , Humans , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Phosphorus/analysis , Lakes/chemistry , Nitrogen/analysis , China
9.
Front Genet ; 13: 984696, 2022.
Article in English | MEDLINE | ID: mdl-36092933

ABSTRACT

Background: Numerous lncRNAs have been shown to affect colon cancer (CC) progression, and tumor necroptosis is regulated by several of them. However, the prognostic value of necroptosis-related lncRNA in CC has rarely been reported. In this study, a necroptosis-related lncRNA prognostic model was constructed, which can provide a reference for clinical diagnosis and treatment. Methods: The Cancer Genome Atlas (TCGA) database provided gene expression and lncRNA sequencing data for CC patients, and GSEA provided necroptosis gene data. Differentially expressed necroptosis-related lncRNAs related to prognosis were identified by differential expression analysis, Pearson correlation analysis, and least absolute shrinkage and selection operator (LASSO) regression. Based on the results of the multivariate COX regression analysis, a risk scoring model was constructed, A Kaplan-Meier analysis was performed to compare overall survival (OS) between low-risk and high-risk groups. A nomogram was then developed and validated based on the clinical data and risk scores of CC patients. In addition, Gene Set Enrichment Analysis (GSEA) and immune correlation analysis were conducted to explore the possible pathways and immune regulatory effects of these necroptosis-related lncRNAs. Results: In total, we identified 326 differentially expressed necroptosis-related lncRNAs in the TCGA database. Survival analysis showed that the OS of patients in the low-risk group was significantly better than that in the high-risk group (p < 0.05). Finally, 10 prognostic necroptosis-related lncRNAs were used to construct the nomogram. The composite nomogram prediction model evaluated and validated with good prediction performance (3-year AUC = 0.85, 5-years AUC = 0.82, C-index = 0.78). The GSEA and immune correlation analyses indicated that these lncRNAs may participate in multiple pathways involved in CC pathogenesis and progression. Conclusion: We established a novel necroptosis-related lncRNA CC prognosis prediction model, which can provide a reference for clinicians to formulate personalized treatment and review plans for CC patients. In addition, we also found that these necroptosis-related lncRNAs may affect the pathogenesis and progression of colon cancer through multiple pathways, including altering the activity of various immune cells.

10.
Lung Cancer ; 172: 29-34, 2022 10.
Article in English | MEDLINE | ID: mdl-35986977

ABSTRACT

This retrospective study aimed to estimate the incidence, risk factors of thromboembolism events (TEs) in non-small cell lung cancer patients harboring common gene mutation, and evaluate a genetic link between oncogenes and the risk of TEs in Asian patients with NSCLC. METHODS: Univariate and multivariate Cox's proportional hazards regression models were used to identify the strongest predictors of TE development and evaluate the risk of TE in patients with different gene statuses of NSCLC patients. RESULTS: In univariate and multivariate COX analysis, patient with squamous cell carcinoma (HR 3.01, 95% CI: [1.06,8.56]; p = 0.039), multi-site metastases (HR: 2.72; 95% CI: [1.08,6.92]; p = 0.032) or high white blood cell (WBC) (HR 3.24, 95% CI: [1.46,7.22]; p = 0.004), less hemoglobin (HGB) (HR 4.89, 95% CI: [1.90,12.64]; p = 0.001), are at higher risk of thrombosis. At the molecular level, ROS and ALK rearrangement is highly associated with TE development, with HR of 4.04 (95%CI: [1.54,10.58]; p = 0.005) and HR of 3.57 (95% CI: [1.01,12.66]; p = 0.049) in univariate analysis, and even higher in multivariate analysis. EGFR mutations seem to be a protective factor against TE in univariate analyses (HR:0.28, 95%CI [0.12,0.65], p = 0.003) but are not statistically significant in the multivariate model. No correlation between KRAS mutations and TE events in both models. Besides, a numerically higher cumulative incidence of thrombosis event was observed in patients who used TKI (HR 1.473; 95% CI: [0.682, 3.181]; p = 0.32). CONCLUSION: Our study demonstrated that driver gene mutation may increase the risk of thrombosis in non-small cell lung cancer patients. The presence of ALK/ROS rearrangements in our study is associated with an approximately threefold to fourfold increase in thrombosis risk in NSCLC patients. For advanced-stage patients who used TKI, an increased incidence of thrombosis risk and shorter follow-up were observed.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Thromboembolism , Anaplastic Lymphoma Kinase/genetics , Carcinoma, Non-Small-Cell Lung/complications , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Humans , Lung Neoplasms/complications , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Reactive Oxygen Species , Retrospective Studies , Thromboembolism/genetics
11.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35457998

ABSTRACT

Prussian blue attracts the attention of many researchers as a promising candidate for use in sodium-ion battery cathodes due to its open frameworks and high working potential. However, the interstitial water in its crystal structure and its poor electronic conductivity limits its performance in practical sodium-ion batteries. Here, acid-assisted ball milling synthesis was employed as a versatile method for the production of surface-modified Prussian blue. With (CH3COO)2Fe being used as the raw material, the Prussian blue produced using ball milling synthesis was modified by the carboxyl functional group on its surface, which resulted in lower interstitial water content and enhanced electrochemical cycling performance. In addition, ball milling synthesis provided the as-prepared Prussian blue with a large surface area, improving its electrochemical rate performance. When used as the cathode of sodium-ion batteries, as-prepared Prussian blue delivered a specific capacity of 145.3 mAh g-1 at 0.2 C and 113.7 mAh g-1 at 1 C, maintaining 54.5% of the initial capacity after 1000 cycles at 1 C (1 C = 170 mA g-1). Furthermore, a solid-state sodium-ion battery was mounted, with as-prepared Prussian blue being employed as the cathode and Na metal as the anode, which delivered a high specific capacity of 128.7 mAh g-1 at 0.2 C. The present study put forward an effective solution to overcome the limitations of Prussian blue for its commercial application.

12.
Nat Mater ; 21(6): 673-680, 2022 06.
Article in English | MEDLINE | ID: mdl-35210585

ABSTRACT

The oxygen evolution reaction is central to making chemicals and energy carriers using electrons. Combining the great tunability of enzymatic systems with known oxide-based catalysts can create breakthrough opportunities to achieve both high activity and stability. Here we report a series of metal hydroxide-organic frameworks (MHOFs) synthesized by transforming layered hydroxides into two-dimensional sheets crosslinked using aromatic carboxylate linkers. MHOFs act as a tunable catalytic platform for the oxygen evolution reaction, where the π-π interactions between adjacent stacked linkers dictate stability, while the nature of transition metals in the hydroxides modulates catalytic activity. Substituting Ni-based MHOFs with acidic cations or electron-withdrawing linkers enhances oxygen evolution reaction activity by over three orders of magnitude per metal site, with Fe substitution achieving a mass activity of 80 A [Formula: see text] at 0.3 V overpotential for 20 h. Density functional theory calculations correlate the enhanced oxygen evolution reaction activity with the MHOF-based modulation of Ni redox and the optimized binding of oxygenated intermediates.


Subject(s)
Metal-Organic Frameworks , Oxygen , Catalysis , Hydroxides
13.
Nat Catal ; 5(1): 30-36, 2022.
Article in English | MEDLINE | ID: mdl-35141468

ABSTRACT

The surface wettability of catalysts is typically controlled via surface treatments that promote catalytic performance. Here we report on potential-regulated hydrophobicity/hydrophilicity at cobalt-based oxide interfaces with an alkaline solution. The switchable wetting of single particles, directly related to their activity and stability towards the oxygen evolution reaction, was revealed by electrochemical liquid-phase transmission electron microscopy. Analysis of the movement of the liquid in real time revealed distinctive wettability behaviour associated with specific potential ranges. At low potentials, an overall reduction of the hydrophobicity of the oxides was probed. Upon reversible reconstruction towards the surface oxyhydroxide phase, electrowetting was found to cause a change in the interfacial capacitance. At high potentials, the evolution of molecular oxygen, confirmed by operando electron energy-loss spectroscopy, was accompanied by a globally thinner liquid layer. This work directly links the physical wetting with the chemical oxygen evolution reaction of single particles, providing fundamental insights into solid-liquid interfacial interactions of oxygen-evolving oxides.

14.
Nanomicro Lett ; 14(1): 9, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34862572

ABSTRACT

Iron hexacyanoferrate (FeHCF) is a promising cathode material for sodium-ion batteries. However, FeHCF always suffers from a poor cycling stability, which is closely related to the abundant vacancy defects in its framework. Herein, post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of high-quality FeHCF in a highly concentrated Na4Fe(CN)6 solution. Both the post-synthetic and in-situ vacancy repaired FeHCF products (FeHCF-P and FeHCF-I) show the significant decrease in the number of vacancy defects and the reinforced structure, which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF. In particular, FeHCF-P delivers a reversible discharge capacity of 131 mAh g-1 at 1 C and remains 109 mAh g-1 after 500 cycles, with a capacity retention of 83%. FeHCF-I can deliver a high discharge capacity of 158.5 mAh g-1 at 1 C. Even at 10 C, the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g-1 and retains 75% after 800 cycles. This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF.

15.
Transl Lung Cancer Res ; 10(7): 3276-3291, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34430364

ABSTRACT

OBJECTIVE: Update the last known review, and summarize the definitions, diagnostic criteria, reported risk factors, possible mechanisms and potential biomarkers of hyperprogressive disease (HPD) under immunotherapy. BACKGROUND: Immunotherapy is a relatively new systemic therapy adding a new method of treatment of especially advanced cancer patients. In a variety of immunotherapies, however, an unexpected acceleration of tumor growth, known as HPD, is observed in approximately 30% of patients after immune checkpoint inhibitor (ICI) treatment. HPD has a deleterious survival effect on patients and represents an urgent issue for both clinicians and patients. Existing literature has reviewed and summarized the definition, diagnostic criteria, reported risk factors and possible mechanisms of hyperprogression. However, with the gradual deepening of the exploration of HPD, researchers have made significant breakthroughs in elucidating the mechanism and mechanism of HPD and exploring biomarkers. METHODS: The search was conducted on Google Scholar and PubMed in January and May of 2021. We searched among English papers with no limitation on the publication year. We have included retrospective studies, case reports and basic researches related to HPD in the collection, we also referred to some review articles on HPD in recent years. A qualitative-interpretive approach was used for data extraction. CONCLUSIONS: HPD is considered to be an acceleration of tumor growth after ICI treatment that is not only due to immune infiltration but also due to real disease progression, with an incidence of about 4-30% in all retrospective published studies to date. Currently, the most widely used criteria of HPD contain Response Evaluation Criteria in Solid Tumors (RECIST) and tumor growth rate (TGR) or tumor growth kinetics. The common risk factors and underlying mechanisms of HPD have not yet been fully elucidated. However, based on the poor prognosis of HPD, there have been many advances in the exploration of biomarkers in recent years, like the prediction of HPD, such as LDH levels of peripheral blood, liquid biopsy, and radiomics, etc.

16.
BMC Plant Biol ; 21(1): 275, 2021 Jun 16.
Article in English | MEDLINE | ID: mdl-34134615

ABSTRACT

BACKGROUND: Flavonoid biosynthesis in plants is primarily regulated at the transcriptional level by transcription factors modulating the expression of genes encoding enzymes in the flavonoid pathway. One of the most studied transcription factor complexes involved in this regulation consists of a MYB, bHLH and WD40. However, in Chinese Narcissus (Narcissus tazetta L. var. chinensis), a popular monocot bulb flower, the regulatory mechanism of flavonoid biosynthesis remains unclear. RESULTS: In this work, genes related to the regulatory complex, NtbHLH1 and a R2R3-MYB NtMYB6, were cloned from Chinese Narcissus. Phylogenetic analysis indicated that NtbHLH1 belongs to the JAF13 clade of bHLH IIIf subgroup, while NtMYB6 was highly homologous to positive regulators of proanthocyanidin biosynthesis. Both NtbHLH1 and NtMYB6 have highest expression levels in basal plates of Narcissus, where there is an accumulation of proanthocyanidin. Ectopic over expression of NtbHLH1 in tobacco resulted in an increase in anthocyanin accumulation in flowers, and an up-regulation of expression of the endogenous tobacco bHLH AN1 and flavonoid biosynthesis genes. In contrast, the expression level of LAR gene was significantly increased in NtMYB6-transgenic tobacco. Dual luciferase assays showed that co-infiltration of NtbHLH1 and NtMYB6 significantly activated the promoter of Chinese Narcissus DFR gene. Furthermore, a yeast two-hybrid assay confirmed that NtbHLH1 interacts with NtMYB6. CONCLUSIONS: Our results suggest that NtbHLH1 may function as a regulatory partner by interacting directly with NtMYB6 to enhance proanthocyanidin accumulation in Chinese Narcissus.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Narcissus/metabolism , Plant Proteins/metabolism , Proanthocyanidins/biosynthesis , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Narcissus/genetics , Protein Binding , RNA, Plant , RNA-Seq , Nicotiana/genetics
17.
RSC Adv ; 11(50): 31827-31833, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-35496833

ABSTRACT

As advanced electrode materials for sodium ion batteries, Prussian blue and its derivatives have attracted considerable attention due to their low cost, structural stability and facile synthesis process. However, the application of commercially available Prussian blue is limited by its poor electronic conductivity as well as the structural defect induced by crystalline/interstitial water molecules. Herein, to address these drawbacks, an etching-agent free method is developed to synthesize Prussian blue with a hollow structure, and the synthesis mechanism is revealed. Owing to the stability of divalent iron ions, the shorter electron/ion diffusion pathway and fewer defect sites of the hollow structure, the obtained Prussian blue exhibits excellent electrochemical performance (specific capacity of 133.6 mA h g-1 at 1C, 1C = 170 mA g-1), which can put forward a new avenue to engineer advanced electrode materials for sodium ion batteries.

18.
Int J Biol Macromol ; 168: 442-452, 2021 Jan 31.
Article in English | MEDLINE | ID: mdl-33310097

ABSTRACT

Processive endoglucanases possess both endo- and exoglucanase activity, making them attractive discovery and engineering targets. Here, a processive endoglucanase EG5C-1 from Bacillus subtilis was employed as the starting point for enzyme engineering. Referring to the complex structure information of EG5C-1 and cellohexaose, the amino acid residues in the active site architecture were identified and subjected to alanine scanning mutagenesis. The residues were chosen for a saturation mutagenesis since their variants showed similar activities to EG5C-1. Variants D70Q and S235W showed increased activity towards the substrates CMC and Avicel, an increase was further enhanced in D70Q/S235W double mutant, which displayed a 2.1- and 1.7-fold improvement in the hydrolytic activity towards CMC and Avicel, respectively. In addition, kinetic measurements showed that double mutant had higher substrate affinity (Km) and a significantly higher catalytic efficiency (kcat/Km). The binding isotherms of wild-type EG5C-1 and double mutant D70Q/S235W suggested that the binding capability of EG5C-1 for the insoluble substrate was weaker than that of D70Q/S235W. Molecular dynamics simulations suggested that the collaborative substitutions of D70Q and S235W altered the hydrogen bonding network within the active site architecture and introduced new hydrogen bonds between the enzyme and cellohexaose, thus enhancing both substrate affinity and catalytic efficiency.


Subject(s)
Bacillus subtilis/enzymology , Cellulase/chemistry , Cellulase/metabolism , Mutation , Bacillus subtilis/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cellulase/genetics , Hydrogen Bonding , Hydrolysis , Kinetics , Models, Molecular , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Oligosaccharides/metabolism , Protein Engineering , Substrate Specificity
19.
FEBS Open Bio ; 11(2): 375-385, 2021 02.
Article in English | MEDLINE | ID: mdl-33211401

ABSTRACT

Pulmonary atresia with ventricular septal defect (PA/VSD) is a rare congenital heart disease (CHD) characterized by a lack of luminal continuity and blood flow from either the right ventricle or the pulmonary artery, together with VSDs. The prevalence of PA/VSD is about 0.2% of live births and approximately 2% of CHDs. PA/VSD is similar to tetralogy of Fallot (TOF) in terms of structural and pathological characteristics. The pathogenesis of these two CHDs remains incompletely understood. It was previously reported that N-myc downstream-regulated gene (NDRG)4 is required for myocyte proliferation during early cardiac development. In the present study, we enrolled 80 unrelated patients with PA/VSD or TOF and identified a probably damaging variant p.T256M of NDRG4. The p.T256M variant impaired the proliferation ability of human cardiac myocytes (hCM). Furthermore, the p.T256M variant resulted in G1 and G2 arrest of hCM, followed by an increase in p27 and caspase-9 expression. Our results provide evidence that the p.T256M variant in NDRG4 is a pathogenic variant associated with impaired hCM proliferation and cell-cycle arrest and likely contributes towards the pathogenesis of PA/VSD and TOF.


Subject(s)
Heart Septal Defects/genetics , Muscle Proteins/genetics , Nerve Tissue Proteins/genetics , Pulmonary Atresia/genetics , Tetralogy of Fallot/genetics , Cell Proliferation/genetics , Cells, Cultured , DNA Mutational Analysis , Embryo, Mammalian , Female , G1 Phase Cell Cycle Checkpoints/genetics , G2 Phase Cell Cycle Checkpoints/genetics , Heart Septal Defects/pathology , Humans , Infant , Loss of Function Mutation , Myocytes, Cardiac/pathology , Primary Cell Culture , Pulmonary Atresia/pathology , Tetralogy of Fallot/pathology , Exome Sequencing
20.
FEBS Lett ; 594(24): 4307-4319, 2020 12.
Article in English | MEDLINE | ID: mdl-32946599

ABSTRACT

Transcriptional regulation participates in heart development. However, the transcriptomes of human embryonic hearts during Carnegie stage (CS)10-CS16 have not been elucidated. Here, we found marked changes in the morphology and transcriptome of the human embryonic heart from CS10 to CS11. At CS12-CS14, the embryonic heart undergoes hypoxia-to-aerobic transformation. At CS14-CS16, transcriptome functions were related to energy metabolism, regulation of cholesterol, and processes related to inorganic substances. Moreover, the transcriptomes of cardiac progenitor cells derived from human embryonic stem cells (hESCs) most overlapped with those of human embryonic hearts at CS10. Cardiomyocytes derived from hESCs considerably overlapped with embryonic hearts at CS14-CS16. Overall, these results provide a new perspective into the characteristics of human embryonic heart development.


Subject(s)
Gene Expression Profiling , Heart/embryology , Transcriptome , Embryonic Development , Heart/anatomy & histology , Humans , Myocardium/cytology , Myocardium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...