Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 23(9)2022 May 07.
Article in English | MEDLINE | ID: mdl-35563622

ABSTRACT

Although peroxiredoxin 2 (PRDX2) plays a vital role in relieving oxidative stress, its physiological function in cartilage development remains almost unknown. In this study, we found that the expression of PRDX2 significantly increased in the chondrocytes compared with pre-chondrocytes. PRDX2 knockdown significantly decreased the expression of extracellular matrix (ECM) protein (Col2a and Aggrecan), which led to blocked cartilage formation. Moreover, PRDX2 knockdown also inhibited the expression of connective tissue growth factor (CTGF). CTGF is an important growth factor that regulates synthesis of ECM proteins. We explored the possible regulatory mechanism by which PRDX2 regulated the expression of CTGF. Our results demonstrated that PRDX2 knockdown downregulated the expression of CTGF by inhibiting Wnt5a/Yes-associated protein 1 (YAP1) pathway. In addition, PRDX2 knockdown promoted the expression of interleukin 6 (IL-6), indicating PRDX2 expression had an anti-inflammatory function during antler growth. Mechanistically, PRDX2 knockdown promoted cartilage matrix degradation by activating the IL-6-mediated Janus Kinase 2/Signal Transducer and Activator of Transcription 3 (JAK2/STAT3) signaling pathway. These results reveal that PRDX2 is a potential regulator that promotes cartilage extracellular matrix synthesis.


Subject(s)
Antlers , Deer , Animals , Antlers/metabolism , Cells, Cultured , Chondrocytes/metabolism , Connective Tissue Growth Factor/genetics , Connective Tissue Growth Factor/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Peroxiredoxins/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
Molecules ; 27(8)2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35458712

ABSTRACT

Antler growth depends on the proliferation and differentiation of mesenchymal stem cells (MSCs), and this process may be adversely affected by oxidative stress. Melatonin (MLT) has antioxidant functions, but its role in Cervidae remains largely unknown. In this article, flow cytometry, reactive oxygen species (ROS) identification, qPCR, and other methods were used to investigate the protective mechanism of MLT in H2O2-induced oxidative stress of antler MSCs. The results showed that MLT significantly increases cell viability by relieving the oxidative stress of antler MSCs. MLT inhibits cell apoptosis by protecting mitochondrial function. We blocked the melatonin receptor with luzindole (Luz) and found that the receptor blockade significantly increases H2O2-induced hyperoxide levels and causes significant inhibition of mitochondrial function. MLT treatment activates the nuclear factor E2-related factor 2 (Nrf2) antioxidant signaling pathway, up-regulates the expression of NAD(P)H quinone oxidoreductase 1 (NQO1) and other genes and it could inhibit apoptosis. In contrast, the melatonin receptor blockade down-regulates the expression of Nrf2 pathway-related genes, but significantly up-regulates the expression of apoptotic genes. It was indicated that MLT activates the Nrf2 pathway through the melatonin receptor and alleviates H2O2-induced oxidative stress and apoptosis in antler MSCs. This study provides a theoretical basis for further studying the oxidative stress and antioxidant process of antler MSCs and, thereby, increasing antler yields.


Subject(s)
Antlers , Melatonin , Mesenchymal Stem Cells , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Melatonin/metabolism , Melatonin/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Receptors, Melatonin/metabolism
3.
Int J Mol Sci ; 23(2)2022 Jan 11.
Article in English | MEDLINE | ID: mdl-35054949

ABSTRACT

The sika deer is one type of seasonal breeding animal, and the growth of its antler is affected by light signals. Melatonin (MLT) is a neuroendocrine hormone synthesized by the pineal gland and plays an important role in controlling the circadian rhythm. Although the MLT/MT1 (melatonin 1A receptor) signal has been identified during antler development, its physiological function remains almost unknown. The role of MLT on antler growth in vivo and in vitro is discussed in this paper. In vivo, MLT implantation was found to significantly increase the weight of antlers. The relative growth rate of antlers showed a remarkable increased trend as well. In vitro, the experiment showed MLT accelerated antler mesenchymal cell differentiation. Further, results revealed that MLT regulated the expression of Collage type II (Col2a) through the MT1 binding mediated transcription of Yes-associated protein 1 (YAP1) in antler mesenchymal cells. In addition, treatment with vascular endothelial growth factor (VEGF) promoted chondrocytes degeneration by downregulating the expression of Col2a and Sox9 (SRY-Box Transcription Factor 9). MLT effectively inhibited VEGF-induced degeneration of antler chondrocytes by inhibiting the Signal transducers and activators of transcription 5/Interleukin-6 (STAT5/IL-6) pathway and activating the AKT/CREB (Cyclin AMP response-element binding protein) pathway dependent on Sox9 expression. Together, our results indicate that MLT plays a vital role in the development of antler cartilage.


Subject(s)
Cell Differentiation/drug effects , Chondrocytes/drug effects , Chondrocytes/metabolism , Melatonin/pharmacology , Receptor, Melatonin, MT1/metabolism , Vascular Endothelial Growth Factor A/pharmacology , Animals , Antlers , Biomarkers , Cells, Cultured , Chondrocytes/pathology , Chondrogenesis/drug effects , Chondrogenesis/genetics , Gene Expression Regulation , Melatonin/administration & dosage , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...