Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 470: 134228, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38626683

ABSTRACT

Cadmium (Cd) and arsenic (As) are two highly toxic heavy metals and metalloids that coexist in many situations posing severe threats to plants. Our investigation was conducted to explore the different regulatory mechanisms of ryegrass (Lolium perenne L.) responding to individual and combined Cd and As stresses in hydroponics. Results showed that the ryegrass well-growth phenotype was not affected by Cd stress of 10 mg·L-1. However, As of 10 mg·L-1 caused rapid water loss, proline surge, and chlorosis in shoots, suggesting that ryegrass was highly sensitive to As. Transcriptomic analysis revealed that the transcription factor LpIRO2 mediated the upregulation of ZIP1 and YSL6 that played an important role in Cd tolerance. We found that the presence of As caused the overexpression of LpSWT12, a process potentially regulated by bHLH14, to mitigate hyperosmolarity. Indoleacetic acid (IAA) and abscisic acid (ABA) contents and expression of their signaling-related genes were significantly affected by As stress rather than Cd. We predict a regulatory network to illustrate the interaction between transporters, transcription factors, and signaling transduction, and explain the antagonism of Cd and As toxicity. This present work provides a research basis for plant protection from Cd and As pollution.


Subject(s)
Arsenic , Cadmium , Gene Expression Regulation, Plant , Lolium , Plant Growth Regulators , Stress, Physiological , Cadmium/toxicity , Lolium/drug effects , Lolium/metabolism , Lolium/genetics , Arsenic/toxicity , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Gene Expression Regulation, Plant/drug effects , Stress, Physiological/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Indoleacetic Acids/metabolism , Abscisic Acid/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics
2.
Neotrop Entomol ; 51(4): 570-582, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35680779

ABSTRACT

Enhancement of plant defense by exogenous elicitors is a promising tool for integrated pest management strategy. In the present study, cotton plants were treated with different concentrations (0, 0.01, 0.1, and 1.0 mM) of the natural plant defense elicitor, jasmonic acid (JA), and defense-related indicators in the plants were then determined. The cotton bollworm larvae were fed with JA-treated cotton leaves and larvae performances were discussed in terms of larvae relative growth rate (RGR), larval duration, pupal mass, humoral immunity, and activities of a target enzyme, three detoxification enzymes and two metabolic enzymes. Research results showed that JA treatment increased the contents of gossypol and H2O2, and decreased that of the total soluble carbohydrates, and 0.1 mM JA was more powerful in the induction of defense-related parameters. As a consequence, cotton bollworm larvae reared on JA-treated cotton leaves showed slower RGR, prolonged larvae duration, and decreased pupal mass. In addition, when larvae were fed with JA-treated cotton leaves, activities of phenoloxidae (an indicator of humoral immunity) and acetylcholinesterase (AchE, a target enzyme), alkaline phosphatases (ALP), acidic phosphatase (ACP), and three detoxification enzymes, carboxylesterase (CarE), glutathione S-transferase (GST), and cytochrome P450 (P450), were all reduced compared to the control. Taken together, the results suggest that JA can be an alternative agent for pest management by delaying insect growth and inhibiting immune defense and detoxification capacity of the cotton bollworm, which may reduce the use of synthetic pesticides.


Subject(s)
Gossypium , Moths , Acetylcholinesterase/metabolism , Animals , Cyclopentanes , Cytochrome P-450 Enzyme System/metabolism , Hydrogen Peroxide/metabolism , Immunity, Humoral , Larva , Oxylipins , Plant Leaves , Pupa
SELECTION OF CITATIONS
SEARCH DETAIL
...