Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Microb Cell Fact ; 23(1): 33, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267983

ABSTRACT

Growing evidence has demonstrated that cold and humid environmental stress triggers gastrointestinal (GI) disorders. In this study, we explored the effects of intestinal microbiota homeostasis on the intestinal mucus barrier and GI disorders by cold and humid environmental stress. Moreover, the inner link between the intestinal mucosal microbiota and metabolites in mice with cold and humid environmental stress was interpreted by integrative analysis of PacBio HiFi sequencing microbial genomics and targeted metabolomics. In the current study, we found (1) after the cold and wet cold and humid environmental stress intervened in the intestinal microbiota disorder and homeostasis mice respectively, the bacterial culturing and fluorescein diacetate (FDA) microbial activity detection of intestinal microbiota including feces, intestinal contents, and intestinal mucosa suggested that the cold and humid environmental stress decreased the colony of culturable bacteria and microbial activity, in which intestinal microbiota disorder aggravated the injury of the intestinal mucus barrier and the GI symptoms related to cold and humid environmental stress; (2) the serum amino acid transferases such as glutamate pyruvic transa (GPT), and glutamic oxaloacetic transaminase (GOT) in cold and humid environmental stressed mice increased significantly, indicating that the intestinal microbiota adapted to cold and humid environmental stress by regulating the host's amino acid metabolism; (3) the integrative analysis of multi-omics illustrated a prediction model based on the microbiota Lactobacillus reuteri abundance and host amino acid level that can predict intestinal mucoprotein Muc2 with an adjusted R2 of 75.0%. In conclusion, the cold and humid environmental stress regulates the neurotransmitter amino acids metabolic function both in intestinal mucosal microbiota and host serum by adjusting the composition of the dominant bacterial population Lactobacillus reuteri, which contributes to the intestinal mucus barrier injury and GI disorders caused by cold and humid environmental stress.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Animals , Mice , Intestinal Mucosa , Homeostasis , Amino Acids
2.
Mol Nutr Food Res ; 67(18): e2300452, 2023 09.
Article in English | MEDLINE | ID: mdl-37622564

ABSTRACT

SCOPE: Preliminary research finds that a high-fat diet (HFD) in a fatigued state triggers diarrhea, but the exact mechanism has not been clarified. To address concerns about the pathogenesis of diarrhea, the study evaluates the composition and metabolomics of the gut microbiota. METHODS AND RESULTS: The study uses the multiple platform apparatus device to induce fatigue in mice, combined with intragastric administration of lard-caused diarrhea. Subsequently, the characteristics and interaction relationship of gut microbiota, short-chain fatty acids (SCFAs), inflammatory biomarkers, brain-gut peptides, and lipid metabolism are analyzed at the end of the experiment. HFD in a fatigued state results in a significant increase in interleukin-17, interleukin-6, cholecystokinin, somatostatin, and malondialdehyde content in mice (p < 0.05), along with a substantial decrease in high-density lipoprotein (p < 0.05). Additionally, an HFD in a fatigued state causes changes in the structure and composition of the gut microbiota, with Lactobacillus murinus as its characteristic bacteria, and reduces the production of SCFAs. CONCLUSIONS: An HFD in a fatigued state triggers diarrhea, possibly associated with gut content microbiota dysbiosis, SCFAs deprivation, increased inflammation, and dysregulated lipid metabolism.


Subject(s)
Diet, High-Fat , Gastrointestinal Microbiome , Animals , Mice , Diet, High-Fat/adverse effects , Lipid Metabolism , Diarrhea/etiology , Fatigue , Fatty Acids, Volatile
3.
Front Microbiol ; 14: 1157475, 2023.
Article in English | MEDLINE | ID: mdl-37228379

ABSTRACT

Introduction: This study aimed to investigate the effects of Baohe pill decoction (BPD) on microbial, lactase activity, and lactase-producing bacteria in the intestinal mucosa of mice with diarrhea induced by high-fat and high-protein diet (HFHPD). Methods: Thirty male Kunming (KM) mice were randomly divided into normal (NM), model (MD), and BPD groups. Diarrhea models were manufactured using HFHPD combined with a gavage of vegetable oil. At the end of modeling, the BPD group was given BPD (6.63 g·kg-1d-1) intervention twice daily for 3 d. The NM and MD groups were given equal amounts of sterile water. Subsequently, the intestinal mucosa of the mice was collected, one portion was used for microbial and lactase activity measurement, and the other portion was used for its lactase-producing bacterial characteristics by high-throughput sequencing technology. Results: Our results showed that microbial and lactase activity of intestinal mucosa decreased significantly following diarrhea in mice (Pmicrobial < 0.05, Plactase < 0.001). After BPD intervention, microbial and lactase activity increased significantly (P < 0.01). The number of operational taxonomic units (OTUs), richness, and diversity index of lactase-producing bacteria increased in the BPD group compared to the MD group (P > 0.05), and the community structure were significant differences (P < 0.01). Compared to other groups, Saccharopolyspora, Rhizobium, Cedecea, and Escherichia were enriched in the BPD group. Notably, the relative abundance of the dominant lactase-producing genus Bifidobacterium decreased after BPD intervention. Discussion: The mechanism of BPD in relieving diarrhea induced by HFHPD is closely related to the promotion of lactase activity in the intestinal mucosa, which may be achieved by regulating the structure of lactase-producing bacteria.

4.
Turk J Gastroenterol ; 34(7): 691-699, 2023 07.
Article in English | MEDLINE | ID: mdl-37051624

ABSTRACT

BACKGROUND/AIMS: This study aimed to investigate the effect of diarrhea induced by a high-fat and high-protein diet on lactase-producing bacteria in the intestinal contents of mice from the perspective of diarrhea-related genes. MATERIALS AND METHODS: Ten specific pathogen-free Kunming male mice were chosen and randomly divided into the normal group and model group. The mice in the normal group were fed with high-fat and high-protein diet plus gavage of vegetable oil, while those in the model group were fed with general diet plus gavage of distilled water. After successful modeling, the distribution and diversity of lactase-producing bacteria in the intestinal contents were characterized by metagenomic sequencing technology. RESULTS: After high-fat and high-protein diet intervention, Chao1, observed species index, and operational taxonomic units number decreased in the model group (P > .05), while the Shannon, Simpson, Pielou's evenness, and Goods coverage indices increased (P > .05). The principal coordinate analysis showed that the composition of lactase-producing bacteria differed between the normal group and model group (P < .05). The lactase-producing bacterial source in the intestinal contents of mice was Actinobacteria, Firmicutes, and Proteobacteria, of which Actinobacteria was the most abundant phylum. At the genus level, both groups had their unique genera, respectively. Compared to the normal group, the abundance of Bifidobacterium, Rhizobium, and Sphingobium increased, while Lachnoclostridium, Lactobacillus, Saccharopolyspora, and Sinorhizobium decreased in the model group. CONCLUSION: High-fat and high-protein diet altered the structure of lactase-producing bacteria in the intestinal contents, elevating the abundance of dominant lactase-producing bacteria, while decreasing the richness of lactase-producing bacteria, which may further induce the occurrence of diarrhea.


Subject(s)
Diet, High-Protein , Lactase , Animals , Male , Mice , Bacteria/genetics , Bacteria/metabolism , Diarrhea/microbiology , Lactase/genetics , Lactase/metabolism
5.
Front Microbiol ; 14: 1108398, 2023.
Article in English | MEDLINE | ID: mdl-36744095

ABSTRACT

Introduction: Due to the poor taste of Qiweibaizhu powder (QWBZP), patients have difficulty taking medicine, which leads to poor compliance and limits clinical use to a certain extent. In the trend of restricting sugar intake, sweeteners have gained massive popularity, among which sucrose is a commonly used sweetener in preparations. This study aimed to investigate the effect of different sucrose dose addition with antibiotic-associated diarrhea (AAD) by intervened QWBZP on intestinal mucosal microbiota. Methods: Thirty specific-pathogen-free (SPF) Kunming (KM) male mice were randomly divided into normal group (N), natural recovery group (M), QWBZP group (Q), low dose sucrose group (LQ), medium dose sucrose group (MQ), and high dose sucrose group (HQ). Subsequently, 16S rRNA amplicon sequencing and GC-MS techniques were used to analyze the intestinal mucosal microbiota and short-chain fatty acid (SCFAs) in intestinal contents, respectively, and enzyme-linked immunosorbent assay was used to determine mucin 2 (MUC2) and interleukin 17 (IL-17). Results: Compared with the Q group, the results showed that with the increase of sucrose dose, the intestinal microbial structure of mice was significantly altered, and the intestinal microbial diversity was elevated, with the poor restoration of the intestinal biological barrier, decreased content of SCFAs, high expression of inflammatory factor IL-17 and decreased content of mucosal protective factor MUC2. In conclusion, we found that the addition of sucrose had an effect on the efficacy of the AAD intervented by QWBZP, which was less effective than QWBZP, showing a certain dose-response relationship. In this experiment, it was concluded that the addition of sucrose might also further lead to intestinal inflammation and the disruption of the intestinal mucosal barrier, and the production of metabolites SCFAs. Discussion: The addition of sucrose might also further lead to intestinal inflammation and the disruption of the intestinal mucosal barrier, and the production of metabolites SCFAs. However, these findings still need to be verified in a more extensive study. The effect of adding the sweetener sucrose on the efficacy of Chinese herbal medicine in treating diseases also still needs more research.

6.
Front Nutr ; 9: 1038364, 2022.
Article in English | MEDLINE | ID: mdl-36337643

ABSTRACT

In recent years, sweeteners have gained massive popularity under the trend of limiting sugar intake. Our previous study found that Qiweibaizhu Powder (QWBZP) could improve gut microbiota dysbiosis and has good efficacy in treating antibiotic-associated diarrhea (AAD). In this study, we investigated the effects of sucrose, sorbitol, xylitol, and saccharin on the intestinal mucosal microbiota of AAD mice treated with QWBZP. When the AAD model was constructed by being gavaged mixed antibiotic solution, Kunming mice were randomly assigned to seven groups: the control (mn) group, the ADD (mm) group, the QWBZP (mq) group, the saccharin + QWBZP (mc) group, the sucrose + QWBZP (ms) group, the xylito + QWBZP (mx) group, and the sorbitol + QWBZP (msl) group. Subsequently, 16S rRNA gene amplicon sequencing was used to analyze the intestinal mucosal microbiota composition and abundance. The results showed that feces from AAD mice were diluted and wet and improved diarrhea symptoms with QWBZP and sorbitol. In contrast, the addition of sucrose, saccharin, and xylitol delayed the healing of diarrhea. The relative abundance of intestinal mucosal microbiota showed Glutamicibacter, Robinsoniella, and Blautia were characteristic bacteria of the mx group, Candidatus Arthromitus, and Bacteroidales_S24-7_group as the typical bacteria of the mn group, Clostridium_innocuum_group as the distinct bacteria of the mm group. Mycoplasma and Bifidobacterium as the characteristic bacteria of the ms group. Correlation analysis of typical bacterial genera with metabolic functions shows that Blautia negatively correlates with D-Glutamine and D-glutamate metabolism. Bacteroidales_S24-7_group has a significant negative correlation with the Synthesis and degradation of ketone bodies. The study confirmed that sucrose, sorbitol, xylitol, and saccharin might further influence metabolic function by altering the intestinal mucosal microbiota. Compared to the other sweetener, adding sorbitol to QWBZP was the best therapeutic effect for AAD and increased the biosynthesis and degradation activities. It provides the experimental basis for applying artificial sweeteners in traditional Chinese medicine (TCM) as a reference for further rational development and safe use of artificial sweeteners.

7.
Cells ; 11(20)2022 10 17.
Article in English | MEDLINE | ID: mdl-36291135

ABSTRACT

BACKGROUND: Extensive evidence suggests that gut microbiota may interact with the kidneys and play central roles in the pathogenesis of disease. However, the association of gut microbiota-kidneys in diarrhea remains unclear. METHODS: A diarrhea mouse model was constructed by combining adenine with Folium sennae. We analyzed the characteristics of the gut content microbiota and short chain fatty acids (SCFAs); and explored the potential link between gut content microbiota, SCFAs, intestinal inflammatory response and kidney function. RESULTS: Characteristic bacteria Lactobacillus intestinalis and Bacteroides acidifaciens were enriched in the gut contents of mice. The productions of SCFAs were remarkably inhibited. Model mice presented an increased trend of creatinine (Cr), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), a decreased trend of blood urea nitrogen (BUN) and secretory immunoglobulin A (SIgA). The pathological analysis proved obvious damage to the kidney structure. Lactobacillus intestinalis and Bacteroides acidifaciens exisited in the correlations with acetic acid, intestinal inflammatory response and kidney function. CONCLUSIONS: Adenine combined with Folium sennae-induced diarrhea, altered the structure and function of the gut content microbiota in mice, causing the enrichment of the characteristic bacteria Lactobacillus intestinalis and Bacteroides acidifaciens. The interactions between Lactobacillus intestinalis, Bacteroides acidifaciens and acetic acid, intestinal inflammation, and kidney function might be involved in the process of gut-kidney impairment in adenine, combined with Folium sennae-induced diarrhea.


Subject(s)
Bacteroides , Colitis , Fatty Acids, Volatile , Gastrointestinal Microbiome , Kidney Diseases , Lactobacillus , Tumor Necrosis Factor-alpha , Animals , Mice , Acetic Acid/adverse effects , Adenine/adverse effects , Creatinine , Diarrhea/chemically induced , Fatty Acids, Volatile/metabolism , Immunoglobulin A, Secretory , Inflammation , Interleukin-6 , Kidney , Senna Extract , Disease Models, Animal , Bacteroides/physiology , Lactobacillus/physiology , Colitis/microbiology , Kidney Diseases/microbiology
8.
BMC Microbiol ; 22(1): 226, 2022 09 28.
Article in English | MEDLINE | ID: mdl-36171559

ABSTRACT

BACKGROUND: Excessive fat and protein in food can cause diarrhea by disturbing the intestinal microecology. Lactase is a functional enzyme strongly associated with diarrhea, while lactase bacteria in the intestine are an important source of microbial lactase. Therefore, we reconnoiter the relationship between diarrhea induced by a high-fat and high-protein diet (HFHPD) and intestinal mucosal lactase bacteria from the perspective of functional genes. RESULT: Operational Taxonomic Units (OTUs) were 23 and 31 in the normal group (NM) and model group (MD), respectively, and 11 of these were identical. The Chao1 and Observed specie indexes in the MD were higher than those in the NM, but this was not significant (P > 0.05). Meanwhile, the Principal coordinate analysis (PCoA) and Adonis test showed that the community structures of lactase bacteria in NM and MD were significantly different (P < 0.05). In taxonomic composition, lactase bacteria on the intestinal mucosa were sourced from Actinobacteria and Proteobacteria. Where Actinobacteria were higher in NM, and Proteobacteria were higher in MD. At the genus level, Bifidobacterium was the dominant genus (over 90% of the total). Compared to NM, the abundance of Bifidobacterium were lower in MD, while MD added sources for lactase bacteria of Rhizobium, Amycolatopsis, and Cedecea. CONCLUSIONS: Our data demonstrate that HFHPD altered the community structure of lactase bacteria in the intestinal mucosa, decreased the abundance of the critical lactase bacteria, and promoted the occurrence of diarrhea.


Subject(s)
Diet, High-Protein , Lactase , Bacteria/genetics , Bacteria/metabolism , Diarrhea/microbiology , Humans , Intestinal Mucosa/metabolism , Lactase/genetics , Lactase/metabolism
9.
Front Cell Infect Microbiol ; 12: 1004845, 2022.
Article in English | MEDLINE | ID: mdl-36093186

ABSTRACT

Background: This study investigated the effects of Baohe pill decoction on the diversity and community composition of lactase-producing bacteria in the intestinal contents of mice with diarrhea induced by high-fat and high-protein diet, which provided an experimental basis for the study on the therapeutic mechanism of Baohe pill decoction. Materials and methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP), DisGeNET, UniProt, National Center for Biotechnology Information (NCBI), and GeneCards databases were used to collect the potential targets with active ingredients of Baohe pill decoction, diarrhea, and lactase, and then construct correlation networks. Fifteen Kunming mice were randomly divided into the control group (CN), natural recovery group (NR), and Baohe pill decoction treatment group (BHP), with five mice in each group. After constructing a mouse diarrhea model by HFHPD induction, BHP was gavaged with Baohe pill decoction, and the other groups were gavaged with distilled water of equal. The intestinal contents were collected from ileal to jejunal and analyzed using metagenomic sequencing to characterize the intestinal content of lactase-producing bacteria in mice. Results: The core active ingredients related to diarrhea in Baohe pill decoction were quercetin, luteolin, kaempferol, forsythin, and wogonin. And there was no intersection between the potential targets with the active ingredient of Baohe pill, lactase, and diarrhea. After the intervention of Baohe pill decoction, the Observed species, Chao1 index, and Operational Taxonomic Units (OTU) number increased in BHP (P > 0.05), while the Pielous evenness and Shannon index decreased (P > 0.05). In Beta diversity, the community structure of the NR was significantly different from CN and BHP (P < 0.05), and the community structure of the CN was not significant difference from BHP (P > 0.05). Compared to NR, the relative abundance of Bifidobacterium and Amycolatopsis increased, while the relative abundance of Lachnoclostridium, Sinorhizobium, Cedecea, and Escherichia decreased in BHP, but none of the significant differences (P > 0.05). Conclusion: The therapeutic effect of Baohe pill decoction on diarrhea induced by HFHPD does not appear to involve the body's lactase gene targets directly, but is associated with the change of the construction of lactase-producing bacterial communities.


Subject(s)
Diet, High-Protein , Drugs, Chinese Herbal , Animals , Bifidobacterium , Diarrhea/drug therapy , Diarrhea/microbiology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Lactase/genetics , Mice
10.
Front Nutr ; 9: 957334, 2022.
Article in English | MEDLINE | ID: mdl-35967811

ABSTRACT

A growing body of evidence suggests that the disturbance of intestinal microbiota induced by high-fat diet is the main factor causing many diseases. Dendrobium officinale (DO), a medicinal and edible homologous Chinese herbal medicine, plays essential role in regulating intestinal microbiota. However, the extent of DO on the intestinal contents microbiota in mice fed with a high-fat diet still remains unclear. Therefore, this study explored the role of intestinal contents microbiota in the regulation of adverse effects caused by high-fat diet by DO from the perspective of intestinal microecology. Twenty-four mice were randomly distributed into the normal saline-treated basal diet (bcn), normal saline-treated high-fat diet (bmn), 2.37 g kg-1 days-1 DO traditional decoction-treated high-fat diet (bdn) and 1.19 g kg-1 days-1 lipid-lowering decoction-treated high-fat diet (bjn) groups for 40 days. Subsequently, we assessed the changes in body weight, serum total cholesterol (TC), total triacylglycerol (TG), low density lipoprotein-cholesterol (LDL-C), high density lipoprotein-cholesterol (HDL-C) levels, and the characteristics of intestinal contents microbiota. Results demonstrated that DO exerted the modulating effect on the changes in body weight, TG, TC, LDL-C, and HDL-C levels. Besides, DO decreased the richness and diversity of intestinal contents microbiota, and altered the structure as a whole. Dominant bacteria, Ruminococcus and Oscillospira, varied significantly and statistically. Moreover, DO influenced the carbohydrate, amino acid, and energy metabolic functions. Furthermore, Ruminococcus and Oscillospira presented varying degrees of inhibition/promotion of TG, TC, LDL-C, and HDL-C. Consequently, we hypothesized that Ruminococcus and Oscillospira, as dominant bacteria, played key roles in the treatment of diseases associated with a high-fat diet DO.

11.
Front Nutr ; 9: 964273, 2022.
Article in English | MEDLINE | ID: mdl-36017217

ABSTRACT

The gut microbiota and metabolites are closely related to hypertension; however, the changes in the composition of the gut microbiome and metabolites linking a high salt diet to elevated blood pressure are not established. In this study, traditional Chinese medicine (TCM) syndrome of hypertension caused by high salt had been diagnosed and the pathogenesis of hypertension was explored from the perspective of intestinal microecology. Rats in a high salt diet-induced hypertension group (CG) and normal group (CZ) were compared by 16S rRNA gene full-length sequencing and liquid chromatography and mass spectrometry to identify differences in the bacterial community structure, metabolites, and metabolic pathways. Hypertension induced by a high salt diet belongs to liver-Yang hyperactivity syndrome. Alpha and beta diversity as well as the composition of microbiota from the phylum to species levels differed substantially between the CG and CZ groups. In an analysis of differential metabolites in the intestines, a high salt diet mainly affected the metabolism of amino acids and their derivatives; in particular, γ-aminobutyric acid (GABA) was down-regulated and glutamic acid and its derivatives were up-regulated under a high salt diet. Based on a KEGG analysis, high salt intake mainly altered pathways related to GABA and the glutamate/glutamine metabolism, such as the GABAergic synapse pathway and glutamatergic synapse pathway. The correlation analysis of differential gut microbes and differential metabolites suggested that a high salt diet promoted hypertension via the inhibition of Clostridiaceae_1 growth and alterations in the GABA metabolic pathway, leading to increased blood pressure. These findings suggest that a high salt diet induces hypertension of liver-Yang hyperactivity syndrome by mediating the microbiota associated with the glutamate/GABA-glutamine metabolic cycle via the gut-brain axis.

12.
Front Nutr ; 9: 952647, 2022.
Article in English | MEDLINE | ID: mdl-35873450

ABSTRACT

Background: Qiweibaizhu powder (QWBZP) has been shown to be effective in treating antibiotic-associated diarrhea (AAD). Previous research has reported that plant polysaccharides can promote the growth of beneficial intestinal bacteria and inhibit the multiplication of pathogenic bacteria, thus effectively treating diarrhea. Here, we investigated the effect of QWBZP crude polysaccharide on the diversity of intestinal mucosal bacteria and their community structure composition in mice with AAD, and the aim of this study was to provide the scientific basis for the efficacy of QWBZP crude polysaccharide on diarrhea. Materials and Methods: Eighteen Kunming (KM) mice were randomly divided into the normal (mn) group, the model (mm) group, and the QWBZP crude polysaccharide treatment (ma) group, with six mice in each group. An AAD model was constructed using a mixed antibiotic solution and treated with gavage crude polysaccharide solution of QWBZP. The intestinal mucosa was extracted from the jejunum to the ileum of mice, and the metagenome was extracted and then analyzed using MiSeq sequencing to characterize the intestinal mucosal bacteria in mice. Results: The spleen and thymus indices of each group of mice had no significant differences. The Chao1 and ACE indices of the mn and mm groups were similar, the Simpson index was the largest and the Shannon index was the smallest in the mm group, and there was no significant difference in the diversity indices of all three groups. In the PCA and PCoA, the mn and ma group samples were both relatively concentrated with a high similarity of community structure. In contrast, the samples in the mm group were more scattered and farther away from the samples in the mn and ma groups, i.e., the community structure similarity within and between the groups was low. Compared with the mm group, the relative abundance of Proteobacteria, Lactobacillus, and the Firmicutes/Bacteroidetes (F/B) ratio in the ma group was decreased, while that of Enterococcus continued to increase. In the LEfSe analysis, there were significant differences in the characteristic bacteria in the mn, mm, and ma groups. Conclusion: The single crude polysaccharide component is not very effective in treating AAD, so the clinical efficacy of the QWBZP crude polysaccharide is subject to further investigation.

13.
Front Cell Infect Microbiol ; 12: 1096202, 2022.
Article in English | MEDLINE | ID: mdl-36683693

ABSTRACT

Background: Environment, diet, and emotion may trigger diarrhea, but the mechanism is unclear. Dietary habits or environmental factors affect the composition of gut microbiota. This study aimed to investigate the effects of improper diet combined with high humidity and temperature (HTH) environment on the intestinal mucosal microbiota. Materials and methods: Kunming mice were randomly assigned to two equal groups of five mice, namely the control (ccm) group and the model (cmm) group. Diarrhea mice with dampness-heat (DSH) were established by improper diet combined with HTH environments. We used 16S rRNA gene amplicon sequencing to analyze the characteristics of intestinal mucosal microbiota and the interaction relationship of function. Results: Our study shows that the intestinal mucosal microbiota of mice changed significantly after an improper diet combined with the HTH environments. The abundance of Fusobacteria and Haemophilus increased dramatically in the cmm group compared to the ccm group (P<0.05). And the abundance of Firmicutes, Lactobacillus, and Lonsdalea was significantly decreased in the cmm group (P<0.05). According to the functional predictive analysis, we found that Lactobacillus showed a significant negative correlation with Protein export, Homologous recombination, Phenylalanine, tyrosine, tryptophan biosynthesis, Citrate cycle, and Lipoic acid metabolism. Conclusion: Diarrhea with DSH constructed under improper diet and HTH environment may be related to Lactobacillus and Haemophilus. And long-term consumption of improper diet and the HTH environment may affect metabolism.


Subject(s)
Gastrointestinal Microbiome , Animals , Mice , Diarrhea/microbiology , Diet , Gastrointestinal Microbiome/genetics , Hot Temperature , Humidity , RNA, Ribosomal, 16S/genetics , Temperature
14.
3 Biotech ; 10(5): 228, 2020 May.
Article in English | MEDLINE | ID: mdl-32377501

ABSTRACT

The purpose of this study is to determine the effect of Asparagus on bacterial diversity in the intestinal mucosa of mice fed with high-fat diet, thus providing theoretical basis for the development and research of Asparagus products. Twelve healthy male Kunming mice and twelve healthy female Kunming mice were chosen and randomly divided into normal group, model group, Asparagus group, and lipid-lowering decoction group, with six mice in each group. After establishing the models of mice fed with high-fat diet through feeding with high-fat diet, the mice in the Asparagus group were gavaged with Asparagus juice, those in the lipid-lowering decoction group were gavaged with lipid-lowering decoction, and those in the normal group and high-fat diet group were gavaged with the equal amount of distilled water. Intestinal mucosa from the jejunum to ileum were collected, and DNA was extracted from each mice. The characteristics of the intestinal microbial species were analyzed by PacBio Sequel-based 16S rRNA sequencing. Result showed that the total OTU reached 1559 in the normal group, 1750 in the high-fat diet group, 1795 in the lipid-Lowering decoction group, and 1635 in the Asparagus group, which indicated that the Asparagus juice could inhibit the total OUT of intestinal bacteria. The analysis on sample community diversity indicated that the richness, diversity, richness estimation, and diversity in the Asparagus Group, lipid-lowering decoction group, and normal group were lower than those in the high-fat diet group. Bacteriophyta classification analysis indicated that the relative abundance of Firmicutes, Bacteroidetes, and Actinobacteria in the Asparagus group was between that in the high-fat diet group and normal group. In conclusion, Asparagus can affect the diversity of bacteria in the intestinal mucosa of mice fed with high-fat diet, and achieve a lipid-lowering effect by regulating the intestinal microecology of mice fed with high-fat diet.

15.
PLoS One ; 14(12): e0225802, 2019.
Article in English | MEDLINE | ID: mdl-31809511

ABSTRACT

AIM: The current study aimed to investigate the effects of Debaryomyces hansenii on the diversity of bacterial lactase gene in the intestinal mucosa of antibiotic-associated diarrhea (AAD) mice. METHODS: Eighteen mice were randomly divided into three groups (6 mice per group): healthy control group, diarrhea model group and D. hansenii treatment group. The antibiotic-associated diarrhea model was established by intragastric administration with a mixture of cephradine and gentamicin sulfate (23.33 mL·kg-1·d-1) twice a day for 5 days continuously. After establishing the AAD model, the mice in the D. hansenii treatment group were gavaged with D. hansenii for three days, while other groups were gavaged with distilled water. Then, the intestinal mucosa of all three groups was collected and DNA was extracted in an aseptic environment for the following analysis. RESULTS: The difference in the richness and homogeneity of the bacterial lactase gene among all samples were inapparent, as the difference in the Chao1, ACE, Simpson and Shannon indices among the three groups were insignificant (P>0.05). NMDS analysis also showed that the distance of the samples among the three groups was unobvious. Furthermore, the bacterial lactase gene in the mucosa mainly originated from Actinobacteria, Firmicutes and Proteobacteria. Compared with the healthy control group, the abundance of lactase genes originating from Cupriavidus, Lysobacter, Citrobacter, Enterobacter and Pseudomonas was increased in the D. hansenii treatment group, while the lactase gene from Acidovorax and Stenotrophomonas decreased (p < 0.01 or p < 0.05) in the diarrhea model group and the D. hansenii treatment group. CONCLUSION: D. hansenii was capable of improving the growth of some key lactase-producing bacteria like Deinococcus, Cupriavidus and Lysobacter for treating AAD.


Subject(s)
Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Diarrhea/microbiology , Genes, Bacterial , Genetic Variation , Intestinal Mucosa/microbiology , Lactase/genetics , Saccharomycetales/physiology , Animals , Base Sequence , Biodiversity , Female , Male , Mice , Phylogeny , Principal Component Analysis
16.
3 Biotech ; 9(12): 444, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31763122

ABSTRACT

To probe into the mechanism of antibiotic-associated diarrhea (AAD), the bacterial diversity and composition in the intestinal mucosa of AAD mice were investigated. Twelve specific pathogen-free Kunming mice were divided into control group and model group. The mouse model of AAD was established by gavaging with antibiotics (mixture of gentamycin sulfate and cefradine) at a total dose of 23.33 ml kg-1 day-1 for 5 days continuously, twice a day. The mice in the control group were given with an equal amount of sterile water. Then, the intestinal mucosa DNA was extracted for 16S rRNA gene sequence analysis by high-throughput sequencing. The results showed that the alpha diversity of the two groups did not differ significantly from each other, while the composition of intestinal mucosa bacteria differed dramatically between the two groups. The model group showed a higher abundance of Proteobacteria and Actinobacteria. More importantly, Lactobacillus was significantly less abundant (p = 0.000), while Enterococcus was significantly more abundant (p = 0.019) in the model group than in the control group. Furthermore, antibiotic treatment increased the abundance of Citrobacter, Stenotrophomonas, and Glutamicibacter,whereas antibiotics decreased the abundance of Mycoplasma and Helicobacter. In addition, 6 and 11 unique genera were found in the control group and model group, respectively. The combination of gentamycin sulfate and cefradine changed the intestinal mucosa bacterial composition, reduced colonization resistance and damaged the intestinal mucosal barrier by reducing the abundance of Lactobacillus.

17.
PLoS One ; 14(11): e0224730, 2019.
Article in English | MEDLINE | ID: mdl-31725747

ABSTRACT

AIM: To confirm the effects of Debaryomyces hansenii on intestinal microecology in mice with antibiotic-associated diarrhea (AAD). METHODS: This study took the mucosal microecology as the entry point and an antibiotic mixture was used to induce diarrhea in mice. D. hansenii suspension was used to treat the mice and the bacterial communities of mucosa was analyzed using high-throughput sequencing. RESULTS: The Shannon-Wiener index indicated that the sequencing depth is reasonable and reflected the majority of microbial information. The principal coordinate analysis results showed that mice in the treatment group and the normal group had a similar microbial community structure, while differences in microbial community structure were observed between the model group and the treatment group. The inter-group bacterial structures were analyzed at the phylum level and genus level. The results revealed that antibiotic treatment increased the proportion of Proteobacteria and decreased the proportion of Bacteroides, while D. hansenii treatment inhibited the increase in Proteobacteria. Linear discriminant analysis coupled with effect size measurements (LEfSe) suggested d that the beneficial bacteria Candidatus Arthromitus were the only common bacteria in the normal group (P<0.05). CONCLUSION: The treatment with D.hansenii could contribute to the maintenance of the structure of the mucosal microbiota in comparison with the normal group and inhibit the proliferation of opportunistic bacteria. However, high-dose antibiotic treatment causes mucosal dysbiosis and the proliferation of opportunistic bacteria during the self-recovery period, such as Pseudoalteromonas, Alteromonas, Vibrio.


Subject(s)
Anti-Bacterial Agents/adverse effects , Bacteria/growth & development , Debaryomyces , Diarrhea , Dysbiosis , Gastrointestinal Microbiome/drug effects , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/classification , Diarrhea/chemically induced , Diarrhea/microbiology , Diarrhea/therapy , Dysbiosis/chemically induced , Dysbiosis/microbiology , Dysbiosis/therapy , Mice
18.
Zhong Yao Cai ; 37(3): 473-7, 2014 Mar.
Article in Chinese | MEDLINE | ID: mdl-25174116

ABSTRACT

OBJECTIVE: To study pharmacokinetics-pharmacodynamics (PK-PD) correlation of Yin Teng Gu Bi Kang (YTGBK) prescription through determination of Tanshinone II(A) concentration and the level of Malondialdehyde (MDA) in plasma in normal and blood stasis rats treated with YTGBK prescription. METHODS: The concentration of Tanshinone II(A) in the plasma was measured by HPLC-UV and loratadine was used as internal standard; Thiobarbituric acid reactive substance assay (TBARS) was adopted to determine the concentration of MDA in the plasma Area under the concentration-time curve (AUC) and area under the effect-time curve (AUE) were calculated using linear trapezoid rule. The correlation and regression analysis was performed by plotting AUE (Y) versus lgAUC (X) using linear regression. RESULTS: YTGBK prescription could significantly decrease MDA level in the plasma in above two different physiological rats at the analyzed time point (P < 0.05). Scatter plots of AUE-lgAUC showed an upward trend. The results of the correlation and regression analysis were as follows: Y = 53.367 X -30.780, r = 0. 822, P = 0.007 for normal rats and Y = 61.091 X -39.863, r = 0.777, P = 0.003 for model rats, respectively. CONCLUSION: There is a positive correlation between Tanshinone II(A) level in plasma and the antioxidant activity of YTGBK prescription in decreasing MDA level, which indicates that Tanshinone II(A) is the antioxidant effective substance of YTGBK prescription.


Subject(s)
Abietanes/blood , Antioxidants/pharmacokinetics , Blood Coagulation/drug effects , Drugs, Chinese Herbal/pharmacokinetics , Malondialdehyde/blood , Administration, Oral , Animals , Antioxidants/pharmacology , Area Under Curve , Chromatography, High Pressure Liquid/methods , Disease Models, Animal , Drug Combinations , Drugs, Chinese Herbal/pharmacology , Male , Plants, Medicinal/chemistry , Random Allocation , Rats , Rats, Sprague-Dawley
19.
Zhong Yao Cai ; 36(12): 1973-8, 2013 Dec.
Article in Chinese | MEDLINE | ID: mdl-25090684

ABSTRACT

OBJECTIVE: To elucidate the material basis of Yin Teng Gu Bi Kang Prescription (YTGBKP) for efficacy of promoting blood circulation by means of comparing the pharmaceutical chemistry difference of effective parts in normal rats and rats with acute blood stasis. METHODS: The pharmaceutical chemistry fingerprints of effective parts under physiological and pathological status (acute blood stasis) were established by HPLC,and the in vitro and in vivo chromatographic peaks were compared and analyzed. RESULTS: Five batches of drug-containing plasma samples had 14 chromatographic peaks under normal physiological status,among which 3 rooted in plasma, 9 existed originally in YTGBKP,2 were metabolites. The compound with retention lime at 12 min was identified as ferulic acid by comparing with reference standard; While under pathological status (acute blood stasis), five batches of the drug-containing plasma samples had 14 chromatographic peaks, among which 3 rooted in plasma, 9 existed originally in YTGBKP, 2 were metabolites. The compounds with retention time at 12 min and 32 min were identified as ferulic acid and icariin respectively by comparing with reference standards. There were 10 common peaks under normal physiological and pathological status (acute bloodl stasis) excluding peaks in blank plasma. The intensity of the common peaks produced under pathological status was stronger than that under normal physiological status significantly; Variance analysis showed that there were significant differences (P < 0.05) in peak areas of 3 peaks. CONCLUSION: Blood stasis has influence on the absorption and metabolism of most ingredients from YTGBKPi; Prototypes and metabolites may be the effective substance on promoting blood circulation.


Subject(s)
Blood Circulation/drug effects , Blood Coagulation Disorders/drug therapy , Chemistry, Pharmaceutical/methods , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Animals , Blood Coagulation Disorders/blood , Chromatography, High Pressure Liquid/methods , Disease Models, Animal , Drug Combinations , Drugs, Chinese Herbal/administration & dosage , Medicine, Chinese Traditional , Plants, Medicinal/chemistry , Random Allocation , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...