Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Res Lett ; 16(1): 138, 2021 Aug 31.
Article in English | MEDLINE | ID: mdl-34463837

ABSTRACT

The demand for green and efficient energy storage devices in daily life is constantly rising, which is caused by the global environment and energy problems. Lithium-ion batteries (LIBs), an important kind of energy storage devices, are attracting much attention. Graphite is used as LIBs anode, however, its theoretical capacity is low, so it is necessary to develop LIBs anode with higher capacity. Application strategies and research progresses of novel iron oxides and their composites as LIBs anode in recent years are summarized in this review. Herein we enumerate several typical synthesis methods to obtain a variety of iron oxides based nanostructures, such as gas phase deposition, co-precipitation, electrochemical method, etc. For characterization of the iron oxides based nanostructures, especially the in-situ X-ray diffraction and 57Fe Mössbauer spectroscopy are elaborated. Furthermore, the electrochemical applications of iron oxides based nanostructures and their composites are discussed and summarized.Graphic Abstract.

2.
Int J Mol Sci ; 21(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322339

ABSTRACT

Cyclins, together with highly conserved cyclin-dependent kinases (CDKs), play an important role in the process of cell cycle in plants, but less is known about the functions of cyclins in legume plants, especially Medicago truncatula. Our genome-wide analysis identified 58, 103, and 51 cyclin members in the M. truncatula, Glycine max, and Phaseolus vulgaris genomes. Phylogenetic analysis suggested that these cyclins could be classified into 10 types, and the CycB-like types (CycBL1-BL8) were the specific subgroups in M. truncatula, which was one reason for the expansion of the B-type in M. truncatula. All putative cyclin genes were mapped onto their own chromosomes of each genome, and 9 segmental duplication gene pairs involving 20 genes were identified in M. truncatula cyclins. Determined by quantitative real-time PCR, the expression profiling suggested that 57 cyclins in M. truncatula were differentially expressed in 9 different tissues, while a few genes were expressed in some specific tissues. Using the publicly available RNAseq data, the expression of Mtcyclins in the wild-type strain A17 and three nodule mutants during rhizobial infection showed that 23 cyclins were highly upregulated in the nodulation (Nod) factor-hypersensitive mutant sickle (skl) mutant after 12 h of rhizobium inoculation. Among these cyclins, six cyclin genes were also specifically expressed in roots and nodules, which might play specific roles in the various phases of Nod factor-mediated cell cycle activation and nodule development. Our results provide information about the cyclin gene family in legume plants, serving as a guide for further functional research on plant cyclins.


Subject(s)
Medicago truncatula/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Fabaceae/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Genome, Plant/genetics , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Real-Time Polymerase Chain Reaction , Root Nodules, Plant/genetics , Root Nodules, Plant/metabolism
3.
Life (Basel) ; 10(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899802

ABSTRACT

Leucine-rich repeat receptor-like kinases (LRR-RLKs) constitute the largest subfamily of receptor-like kinases (RLKs) in plants. They play roles in plant growth and developmental and physiological processes, but less is known about the functions of LRR-RLKs in Medicago truncatula. Our genome-wide analysis revealed 329 LRR-RLK genes in the M.truncatula genome. Phylogenetic and classification analysis suggested that these genes could be classified into 15 groups and 24 subgroups. A total of 321 genes were mapped onto all chromosomes, and 23 tandem duplications (TDs) involving 56 genes were distributed on each chromosome except 4. Twenty-seven M.truncatula LRR-RLK segmental duplication gene pairs were colinearly related. The exon/intron organization, motif composition and arrangements were relatively conserved among members of the same groups or subgroups. Using publicly available RNAseq data and quantitative real-time polymerase chain reaction (qRT-PCR), expression profiling suggested that LRR-RLKs were differentially expressed among different tissues, while some were expressed specifically in the roots and nodules. The expression of LRR-RLKs in A17 and 4 nodule mutants under rhizobial infection showed that 36 LRR-RKLs were highly upregulated in the sickle (skl) mutant [an ethylene (ET)-insensitive, Nod factor-hypersensitive mutant] after 12 h of rhizobium inoculation. Among these LRR-RLKs, six genes were also expressed specifically in the roots and nodules, which might be specific to the Nod factor and involved in autoregulation of the nodulation signal. Our results provide information on the LRR-RLK gene family in M. truncatula and serve as a guide for functional research of the LRR-RLKs.

SELECTION OF CITATIONS
SEARCH DETAIL
...