Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Insect Mol Biol ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38545681

ABSTRACT

The silkworm, Bombyx mori, is a complete metamorphosed economic insect, and the silk gland is a significant organ for silk protein synthesis and secretion. The silk gland completely degenerates during pupation, but the regulatory mechanism of programmed cell death (PCD) has not yet been understood. In the present study, we investigated the non-genetic pathway of 20E-induced PCD in the posterior silk gland (PSG) based on intracellular Ca2+ levels. Silk gland morphology and silk gland index indicated rapid degeneration of silk gland during metamorphosis from mature silkworm (MS) to pupal day 1 (P1), and Ca2+ levels within the PSG were found to peak during the pre-pupal day 1 (PP1) stage. Moreover, the results of autophagy and apoptosis levels within the PSG showed that autophagy was significantly increased in MS-PP1 periods, and significantly decreased in PP2 and P1 periods. Apoptosis was almost absent in MS-PP1 periods and significantly increased in PP2 and P1 periods. Additionally, western blotting results showed that autophagy preceded apoptosis, and the autophagy-promoting ATG5 was cleaved by calpain to the autophagy-inhibiting and apoptosis-promoting NtATG5 since PP1 period, while decreased autophagy was accompanied by increased apoptosis. Collectively, these findings suggest that Ca2+ is a key factor in the shift from autophagy to apoptosis.

3.
Arch Insect Biochem Physiol ; 111(4): e21955, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35927931

ABSTRACT

Peptidoglycan recognition proteins (PGRPs) recognize invading microbes via detecting peptidoglycans from microbial cell walls. PGRPs are highly conserved from insects to vertebrates and all play roles during the immune defensive response. Ten putative PGRPs have been identified through transcriptome analysis in the Asian corn borer, Ostrinia furnacalis (Guenée). Whereas, the biochemical functions of most of them have not yet been elucidated. In this study, we found PGRP6 messenger RNA exhibited extremely high expression levels in the midgut, and its transcript level increased dramatically upon bacterial infection. Moreover, the enzyme-linked immunosorbent assay indicated recombinant PGRP6 exhibited a strong binding affinity to peptidoglycans from Micrococcus luteus and Bacillus subtilis, which could agglutinate M. luteus and yeast Pichia pastoris. Additionally, we demonstrated that PGRP6 was involved in the pathway of antimicrobial peptides synthesis, but could not enhance encapsulation and melanization of hemocytes. Overall, our results indicated that O. furnacalis PGRP6 serves as a pattern recognition receptor and detects peptidoglycans from microbes to initiate the immune response.


Subject(s)
Moths , Zea mays , Animals , Moths/genetics , Moths/metabolism , Receptors, Pattern Recognition/genetics , Receptors, Pattern Recognition/metabolism , Immunity, Innate , Peptidoglycan
4.
Int J Mol Sci ; 23(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35955502

ABSTRACT

C-type lectins (CTLs) are widely distributed in mammals, insects, and plants, which act as pattern recognition receptors (PRRs) to recognize pathogens and initiate immune responses. In this study, we identified a C-type lectin gene called BmIML-2 from the silkworm Bombyx mori. Its open reading frame (ORF) encodes 314 amino acids, which contain dual tandem C-type lectin-like domain (CTLD). BmIML-2 is highly expressed in the fat body and is significantly induced at 24 h after BmNPV infection. Moreover, overexpression of BmIML-2 dramatically inhibited the proliferation of BmNPV, and knockdown assay via siRNA further validated the inhibition of BmIML-2 on viral proliferation. In addition, transcript level detection of apoptosis-related genes and observation of apoptosis bodies implied that overexpression of BmIML-2 promoted BmNPV-induced apoptosis. Immunofluorescence analysis indicated that BmIML-2 distributed throughout the cytoplasm and was slightly concentrated in the cell membrane. Taken together, our results suggest that BmIML-2 could inhibit in the proliferation of BmNPV by facilitating cell apoptosis.


Subject(s)
Bombyx , Nucleopolyhedroviruses , Animals , Apoptosis , Bombyx/genetics , Cell Proliferation , Insect Proteins/genetics , Insect Proteins/metabolism , Lectins, C-Type/genetics , Lectins, C-Type/metabolism , Mammals/metabolism , Nucleopolyhedroviruses/genetics
SELECTION OF CITATIONS
SEARCH DETAIL