Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Environ Pollut ; 350: 124002, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636834

ABSTRACT

Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.


Subject(s)
Environmental Pollutants , Food Contamination , Halogenated Diphenyl Ethers , Polychlorinated Biphenyls , China , Animals , Humans , Food Contamination/analysis , Food Contamination/statistics & numerical data , Halogenated Diphenyl Ethers/analysis , Polychlorinated Biphenyls/analysis , Environmental Pollutants/analysis , Polychlorinated Dibenzodioxins/analysis , Risk Assessment , Dietary Exposure/statistics & numerical data , Adult , Child , Environmental Monitoring , Eggs/analysis
2.
Environ Pollut ; 344: 123368, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38246217

ABSTRACT

Nitrophenols have received extensive attention due to their strong light-absorbing ability in the near-ultraviolet-visible region, which could be influenced by the atmospheric processes of nitrophenols. However, our knowledge and understanding of the formation and evolution of nitrophenols are still in the nascent stages. In the present study, the mixing states of four mononitrophenol particles (i.e., nitrophenol, methynitrophenol, nitrocatechol, and methoxynitrophenol), and one nitropolycyclic aromatic hydrocarbon particles (i.e., nitronaphthol (NN)) were investigated using a single-particle aerosol mass spectrometer (SPAMS) in November 2019 in Qingdao, China. The results showed, for the first time, that mononitrophenols and NN exhibit different mixing states and diurnal variations. Four mononitrophenols were internally mixed well with each other, and with organic acids, nitrates, potassium, and naphthalene. The diurnal variation in the number fraction of mononitrophenols presented two peaks at 07:00 to 09:00 and 18:00 to 20:00, and a valley at noon. Atmospheric environmental conditions, including NO2, O3, relative humidity, and temperature, can significantly influence the diurnal variation of mononitrophenols. Multiple linear regression and random forest regression models revealed that the main factors controlling the diurnal variation of mononitrophenols were photochemical reactions during the day and aqueous-phase reactions during the night. Unlike mononitrophenols, about 62-83% of NN were internally mixed with [NH4]+ and [H(NO3)2]-, but not with organic acids and potassium. The diurnal variation of NN was also different from that of mononitrophenols, generally increased from 17:00 to 10:00 and then rapidly decreaed from 11:00 to 16:00. These results imply that NN may have sources and atmospheric processes that are different from mononitrophenols. We speculate that this is mostly controlled by photochemical reactions and mixing with [NH4]+, which may influence the diurnal variation of NN in the ambient particles; however, this requires further confirmation. These findings extend our current understanding of the atmospheric formation and evolution of nitrophenols.


Subject(s)
Air Pollutants , Nitrophenols , Potassium , Circadian Rhythm , Antifungal Agents , China , Dust , Aerosols , Environmental Monitoring , Particulate Matter , Seasons
3.
Environ Sci Technol ; 58(1): 510-521, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38100654

ABSTRACT

Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.


Subject(s)
Liquid Crystals , Biodegradation, Environmental , Hydroxylation
4.
Environ Pollut ; 338: 122704, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37806429

ABSTRACT

End-of-life vehicles (ELVs) dismantling sites are the notorious hotspots of chlorinated organophosphate esters (Cl-OPEs). However, the microbial-mediated dechlorination of Cl-OPEs at such sites has not yet been explored. Herein, the dechlorination products, pathways and mechanisms of tris(2-chloroethyl) phosphate (TCEP, a representative Cl-OPE) by an anaerobic enrichment culture (ZNE) from an ELVs dismantling plant were investigated. Our results showed that dechlorination of TCEP can be triggered by reductive transformation to form bis(2-chloroethyl) phosphate (BCEP), mono-chloroethyl phosphate (MCEP) and by hydrolytic dechlorination to form bis(2-chloroethyl) 2-hydroxyethyl phosphate (TCEP-OH), 2-chloroethyl bis(2-hydroxyethyl) phosphate (TCEP-2OH), 2-chloroethyl (2-hydroxyethyl) hydrogen phosphate (BCEP-OH). The combination of 16S rRNA gene amplicon sequencing, quantitative real-time PCR (qPCR) and metagenomics revealed that the Dehalococcoides played an important role in the reductive transformation of TCEP to BCEP and MCEP. A high-quality metagenome-assembled genome (completeness >99% and contamination <1%) of Dehalococcoides was obtained. The sulfate-reducing bacteria harboring haloacid dehalogenase genes (had) may be responsible for the hydrolytic dechlorination of TCEP. These findings provide insights into microbial-mediated anaerobic transformation products and mechanisms of TCEP at ELVs dismantling sites, having implications for the environmental fate and risk assessment of Cl-OPEs at those sites.


Subject(s)
Flame Retardants , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Flame Retardants/analysis , Organophosphates , Phosphates/analysis , Esters , China
5.
Environ Int ; 178: 108104, 2023 08.
Article in English | MEDLINE | ID: mdl-37490788

ABSTRACT

Municipal solid waste incinerator (MSWI) not only is deemed one of the uppermost sources of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), but also produces substantial amount of polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) owing to the existence of brominated flame retardants (BFRs) in the waste. So far, however, PBDD/Fs in the vicinal environments of MSWI and their associated risks remain rarely studied. Based on a one-year passive air sampling (PAS) scheme, we investigated airborne PBDD/Fs and PCDD/Fs around a large-scale MSWI that has been operated for multi-years. Both the concentrations of PBDD/Fs and PCDD/Fs showed spatially decreasing trends with the distance away from the MSWI, confirming the influence of the MSWI on the dioxin levels in its ambient air. But its influence on PBDD/Fs was less because PBDD/Fs exhibit lower volatility and therefore lower gaseous concentrations than PCDD/Fs. Compared to the existing global data of airborne PCDD/Fs and PBDD/Fs, our data of the MSWI vicinity were at medium levels, despite PAS samples only represent the concentrations of gaseous dioxins in theory. The seasonal data suggest that meteorological conditions exerted apparent influences over the concentrations and sources of airborne dioxins around the MSWI. As for PCDD/Fs, the MSWI was diagnosed as their uppermost source, followed by local traffic and volatilization/deposition. Whereas the top three PBDD/F sources were related to PBDEs, bromophenol/bromobenzene, and traffic vehicles, respectively. The bioassay-derived TEQs based on the aryl hydrocarbon receptor activation of airborne dioxins around the MSWI were one or two orders of magnitudes higher than their concentration-based TEQs, and the corresponding carcinogenic risks at some MSWI-vicinal sites exceeded the acceptable threshold proposed by the U. S. EPA (10-6 âˆ¼ 10-4) and deserve continuous attention.


Subject(s)
Air Pollutants , Dioxins , Polychlorinated Dibenzodioxins , Dioxins/analysis , Polychlorinated Dibenzodioxins/analysis , Solid Waste , Dibenzofurans/analysis , Carcinogens , Environmental Monitoring , Sampling Studies , Air Pollutants/analysis , Incineration , Gases/analysis , Dibenzofurans, Polychlorinated/analysis
6.
Water Res ; 233: 119774, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36848852

ABSTRACT

Organophosphate esters (OPEs) are emerging contaminants of growing concern, and there is limited information about the bacterial transformation of OPEs. In this study, we investigated the biotransformation of tris(2-butoxyethyl) phosphate (TBOEP), a frequently detected alkyl-OPE by a bacterial enrichment culture under aerobic conditions. The enrichment culture degraded 5 mg/L TBOEP following the first-order kinetics with a reaction rate constant of 0.314 h-1. TBOEP was mainly degraded via ether bond cleavage, evidenced by the production of bis(2-butoxyethyl) hydroxyethyl phosphate, 2-butoxyethyl bis(2-hydroxyethyl) phosphate, and 2-butoxyethyl (2-hydroxyethyl) hydrogen phosphate. Other transformation pathways include terminal oxidation of the butoxyethyl group and phosphoester bond hydrolysis. Metagenomic sequencing generated 14 metagenome-assembled genomes (MAGs), showing that the enrichment culture primarily consisted of Gammaproteobacteria, Bacteroidota, Myxococcota, and Actinobacteriota. One MAG assigned to Rhodocuccus ruber strain C1 was the most active in the community, showing upregulation of various monooxygenase, dehydrogenase, and phosphoesterase genes throughout the degradation process, and thus was identified as the key degrader of TBOEP and the metabolites. Another MAG affiliated with Ottowia mainly contributed to TBOEP hydroxylation. Our results provided a comprehensive understanding of the bacterial TBOEP degradation at community level.


Subject(s)
Flame Retardants , Phosphates , Esters/chemistry , Esters/metabolism , Organophosphorus Compounds , Organophosphates/metabolism , Flame Retardants/metabolism
7.
J Chromatogr A ; 1693: 463879, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36822039

ABSTRACT

The accuracy of compound-specific isotope analysis (CSIA) of trace-level pollutants in complex environmental samples has always been limited by two main challenges: poor chromatographic separation and insufficient amounts of analytes. In this study, a two-dimensional gas chromatography-isotope ratio mass spectrometry (2DGC-IRMS) system was constructed for compound-specific δ13C analysis of high molecular weight polycyclic aromatic hydrocarbons (HMW-PAHs) in estuarine/marine sediments. This construction occurred through hyphenating an extra gas chromatography system (GC) to a conventional GC-IRMS using a commercially available multi-column switching-cryogenic trapping system (MCS-CTS). Compared with the previous 2DGC-IRMS strategy, which utilizes a Deans Switch device, the newly implemented 2DGC-IRMS scheme resulted in online purification of target analytes as well as enriched them online via duplicate injection and cryogenic trapping in CTS; this resultingly lowered the limits of detection (LOD) of CSIA. To improve the sample transfer efficiency to the IRMS, a broader-bore and longer fused-silica capillary was utilized to replace the original sample capillary running from the sample open split to the IRMS. A ẟ13C analysis of PAH standards showed accurate ẟ13C values, and high precisions (standard deviations 0.13-0.37%) were achieved, with the LOD of HMW-PAHs reduced to at least 1.0 mg/L (i.e., 0.07 to 0.09 nmol carbon per compound on-column). The successful application of this newly developed 2DGC-IRMS scheme provides a practical solution for the reliable CSIA of trace-level pollutants in complex environmental samples that cannot be measured using the conventional GC-IRMS system.


Subject(s)
Environmental Pollutants , Polycyclic Aromatic Hydrocarbons , Polycyclic Aromatic Hydrocarbons/analysis , Molecular Weight , Carbon Isotopes/analysis , Mass Spectrometry/methods , Gas Chromatography-Mass Spectrometry/methods , Environmental Pollutants/analysis
8.
Environ Sci Technol ; 57(2): 1167-1176, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36599128

ABSTRACT

Microplastics are readily accumulated in coastal sediments, where active sulfur (S) cycling takes place. However, the effects of microplastics on S cycling in coastal sediments and their underlying mechanisms remain poorly understood. In this study, the transformation patterns of different S species in mangrove sediments amended with different microplastics and their associated microbial communities were investigated using stable isotopic analysis and metagenomic sequencing. Biodegradable poly(lactic acid) (PLA) microplastics treatment increased sulfate (SO42-) reduction to yield more acid-volatile S and elementary S, which were subsequently transformed to chromium-reducible S (CRS). The S isotope fractionation between SO42- and CRS in PLA treatment increased by 9.1‰ from days 0 to 20, which was greater than 6.8‰ in the control. In contrast, recalcitrant petroleum-based poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC) microplastics had less impact on the sulfate reduction, resulting in 7.6 and 7.7‰ of S isotope fractionation between SO42- and CRS from days 0 to 20, respectively. The pronounced S isotope fractionation in PLA treatment was associated with increased relative abundance of Desulfovibrio-related sulfate-reducing bacteria, which contributed a large proportion of the microbial genes responsible for dissimilatory sulfate reduction. Overall, these findings provide insights into the potential impacts of microplastics exposure on the biogeochemical S cycle in coastal sediments.


Subject(s)
Microplastics , Plastics , Sulfur Isotopes/analysis , Sulfur , Isotopes/analysis , Polyesters , Sulfates/analysis , Geologic Sediments/analysis
9.
Environ Pollut ; 316(Pt 1): 120489, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36273686

ABSTRACT

Polybrominated dibenzo-p-dioxin/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxin/furans (PCDD/Fs) in the environment are closely related to their precursors, brominated flame retardants (BFRs) and organochlorine pesticides (OCPs). However, their change trends following the regulation of BFRs and OCPs remain incompletely characterized. Here, we examined PBDD/Fs and PCDD/Fs in sediments from a historical hotspot for both BFRs and OCPs, namely the Pearl River Delta (PRD), China. PBDD/Fs showed ubiquity in these samples but significantly lower concentrations than PCDD/Fs. Spatially, the occurrence of PBDD/Fs was positively correlated with local development levels and sediments from highly urbanized/industrialized areas showed higher and increasing PBDD/F concentrations. Polybrominated diphenyl ether (PBDE)-related products/industries were the greatest PBDD/F contributors to the PRD, followed by bromo-phenol/benzene-related products/industries. PCDD/Fs in PRD sediments showed significant positive correlations with local grain planting area, yield, and pesticide consumption. The historical use of pentachlorophenol (PCP)/PCP-Na and biomass open-burning were the leading PCDD/F sources of the PRD agricultural/rural areas, where the concentrations and toxic equivalent quantities (TEQs) of PCDD/Fs in sediments changed very little over the past decade. Anthropogenic thermal processes involved in metallurgy, waste incineration, and vehicles were the greatest PCDD/F contributors in the PRD urban/industrial areas, where the PCDD/F concentrations in sediments almost doubled over the last decade. This finding indicates the increasing PCDD/F contributions of industrial and municipal activities in the PRD, despite the implementation of strict emission standards. Over sixty percent of the samples showed TEQs that surpassed the low-risk threshold specified for mammalian life by the U.S. EPA (2.5 pg TEQ g-1) and warrant continuous attention.


Subject(s)
Dioxins , Flame Retardants , Hydrocarbons, Chlorinated , Pesticides , Polychlorinated Dibenzodioxins , Dibenzofurans/analysis , Dibenzofurans, Polychlorinated , Dioxins/analysis , Environmental Monitoring , Flame Retardants/analysis , Furans/analysis , Mammals , Polychlorinated Dibenzodioxins/analysis
10.
Environ Sci Technol ; 56(14): 10239-10248, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35790344

ABSTRACT

Extremely high levels of decabromodiphenyl ether (BDE-209) are frequently found in the serum of occupationally exposed groups, such as e-waste dismantlers and firefighters. However, the metabolism of BDE-209 in the human body is not adequately studied. In this study, 24 serum samples were collected from workers at a typical e-waste recycling workshop in Taizhou, Eastern China, and the occurrence and fate of these higher brominated diphenyl ethers (PBDEs) were investigated. The median concentration of the total PBDEs in the serum was 199 ng/g lipid weight (lw), ranging from 125 to 622 ng/g lw. Higher brominated octa- to deca-BDEs accounted for more than 80% of the total PBDEs. Three ortho-hydroxylated metabolites of PBDEs─6-OH-BDE196, 6-OH-BDE199, and 6'-OH-BDE206─were widely detected with a total concentration (median) of 92.7 ng/g lw. The concentrations of the three OH-PBDEs were significantly higher than their octa- and nona-PBDE homologues, even exceeding those of the total PBDEs in several samples, indicating that the formation of OH-PBDEs was a major metabolic pathway of the higher brominated PBDEs in occupationally exposed workers. An almost linear correlation between 6-OH-BDE196 and 6-OH-BDE199 (R = 0.971, P < 0.001) indicates that they might undergo a similar biotransformation pathway in the human body or may be derived from the same precursor. In addition, the occurrence of a series of penta- to hepta- ortho-substituted OH-PBDEs was preliminarily identified according to their unique "predioxin" mass spectral profiles by GC-ECNI-MS. Taken together, the tentative metabolic pathway for BDE-209 in e-waste dismantlers was proposed. The oxidative metabolism of BDE-209 was mainly observed at the ortho positions to form 6'-OH-BDE-206, which later underwent a consecutive loss of bromine atoms at the meta or para positions to generate other ortho-OH-PBDEs. Further studies are urgently needed to identify the chemical structures of these ortho-OH-PBDE metabolites, and perhaps more importantly to clarify the potentially toxic effects, along with their underlying molecular mechanisms.


Subject(s)
Electronic Waste , Halogenated Diphenyl Ethers , Biotransformation , Electronic Waste/analysis , Environmental Monitoring , Halogenated Diphenyl Ethers/analysis , Humans
11.
Sci Rep ; 12(1): 9118, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35650280

ABSTRACT

For identifying the occurrence and extent of thermochemical sulfate reduction (TSR) reaction of natural gas and better understanding the chemical and carbon isotopic variations in natural gas reservoirs, high-pressure hydro-pyrolysis with a special designed apparatus was performed using natural gas and various amounts of MgSO4·7H2O at up to 360 °C. The yields, chemical and isotopic compositions of the gases produced during TSR and thermal cracking were measured. As the extent of TSR reaction increased, the concentrations of CH4, CO2 and H2S increased in a nonlinear way, while those of C2H6 and C3H8 decreased. According to the variation of gas content, the TSR reaction of alkane gases can be divided into an uncatalyzed and a catalyzed stage, which is different from previous studies that treated the TSR reaction of alkane gases as a non-autocatalytic reduction process. As the concentration of MgSO4·7H2O increased, the rate of TSR reaction with hydrocarbon gases increased. The concentrations of HSO4- and volume of aqueous phase could be responsible for the different TSR reaction rates in the catalyzed stage. The co-variation of ln(C1/C2) and ln(C2/C3) could be related to the TSR reaction of alkane gases. Our study provides clues for understanding the compositional variations in natural conditions.

12.
Ecotoxicol Environ Saf ; 241: 113730, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35691194

ABSTRACT

Severe pollution of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and their brominated analogues (PBDD/Fs) was frequently reported for the waters located near unregulated e-waste recycling areas. However, the migrations of these high-level dioxins via waterways and their potential threats to the lower reaches were seldom investigated. In this study, we analyzed PCDD/Fs and PBDD/Fs in 27 surficial sediments collected from the Lian River encompassing the Guiyu, China e-waste recycling zone, and investigated their distributions, sources, migration behaviors and risks. Both PCDD/Fs and PBDD/Fs in these sediments exhibited a spatial trend of Guiyu > Guiyu downriver > Guiyu upriver, illustrating that the Guiyu e-waste recycling activities were the uppermost dioxin contributors in this watershed. Sediments from different Guiyu villages demonstrated big gaps in PCDD/F concentrations and congener compositions, and the reason was attributed to the diverse e-waste recycling activities practiced in these villages. Sediments near the e-waste open-burning areas demonstrated extremely high PCDD/F concentrations and unique PCDD/F profiles featured by low-chlorinated PCDFs (tetra- to hexa-), which is quite different from the OCDD-dominant PCDD/F profile found in most of the Lian River sediments. The geographical distributions of PCDD/F concentrations and profiles illustrate that the substantial amount of PCDD/Fs in Guiyu sediments were mainly retained in local and vicinal water bodies. The principal component analysis (PCA) results further confirm that the high-level PCDD/Fs in Guiyu sediments exhibited quite limited translocations downstream and therefore exerted little influences on the lower reaches. Pentachlorophenol use in history, ceramic industry and vehicle exhaust were diagnosed as the major PCDD/F sources for most sediments of the Lian River. Total toxicity equivalent quantities (TEQs) of 70% of the Lian River sediments surpassed the high-risk limit specified for mammalian life by the U.S.EPA (25 pg TEQ g-1), and most of these sediments were from Guiyu and its near downstream, which merit continuous attention and necessary remediation measures.


Subject(s)
Benzofurans , Dioxins , Electronic Waste , Polychlorinated Dibenzodioxins , Benzofurans/analysis , China , Dibenzofurans/analysis , Dibenzofurans, Polychlorinated/analysis , Dioxins/analysis , Electronic Waste/analysis , Environmental Monitoring , Polychlorinated Dibenzodioxins/analysis
13.
Chemosphere ; 304: 135212, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35690175

ABSTRACT

Elevated concentrations of polychlorinated biphenyls (PCBs) found in environmental media and biota from typical e-waste dismantling sites have raised concerns regarding their human body burden and potential negative health effects. In the present study, the enantiomeric compositions of three typical chiral congeners (PCB-95, PCB-132, and PCB-149) were measured in 24 serum samples from e-waste workers by using gas chromatography coupled to triple quadrupole tandem mass spectrometry. The mean enantiomer fractions (EFs) of chiral congeners in serum from the workers were 0.655 ± 0.103, 0.679 ± 0.164, and 0.548 ± 0.095 for PCB-95, PCB-132, and PCB-149, respectively. The (+) enantiomers of PCB-95, PCB-132, and PCB-149 were enantioselectively enriched in serum. Significant positive correlations were observed between the EF of the chiral congener PCB-95 and the total concentration of OH-PCBs, suggesting that EF values of chiral PCBs could be used to indicate the extent of biological metabolism. In addition, the EF of PCB-95 in serum samples increased with increasing work duration of the e-waste workers, thus demonstrating the usefulness of EF values of chiral PCBs as tracers of human exposure to PCBs. Because of the enantioselective enrichment of (+) enantiomers of PCB-95, PCB-132, and PCB-149, further studies are needed to explore the metabolism and toxicity of chiral contaminants in humans.


Subject(s)
Electronic Waste , Polychlorinated Biphenyls , Electronic Waste/analysis , Gas Chromatography-Mass Spectrometry , Humans , Polychlorinated Biphenyls/analysis , Stereoisomerism
14.
Environ Res ; 212(Pt A): 113212, 2022 09.
Article in English | MEDLINE | ID: mdl-35367230

ABSTRACT

Nine amine species in atmospheric particles during haze and low-pollution days with low and high relative humidity (RH) were analyzed in urban Guangzhou, China. The mean concentrations of total measured amines (Æ©amines) in fine particles were 208 ± 127, 63.7 ± 21.3, and 120 ± 20.1 ng m-3 during haze, low pollution-low RH (LP-LRH), and low pollution-high RH (LP-HRH) episodes, respectively. The dominant amine species were methylamine (MA), dimethylamine (DMA), diethylamine (DEA) and dibutylamine (DBA), which in total accounted for 82-91% of the Æ©amines during different pollution episodes. The contributions of Æ©amines-C to water-soluble organic carbon (WSOC) and Æ©amines-N to water-soluble organic nitrogen (WSON) were 1.52% and 2.49% during haze, 1.24% and 1.96% during LP-LRH, and 2.00 and 2.98% during LP-HRH days, respectively. The mass proportion of Æ©amines in fine particles was higher during LP-HRH periods (0.19%) than during haze and LP-LRH periods (0.16%). The mass proportion of DBA in Æ©amines increased from 7% during haze and LP-LRH episodes to 25% during LP-HRH episodes. Compared with other amines, DBA showed a stronger linear relationship with RH (r = 0.867, p < 0.01), which demonstrates its high sensitivity to high RH conditions. Meteorological parameters (including RH, the mixed layer depth, wind speed and temperature), the oxidizing capacity (ozone concentration), and gaseous pollutants (NOx and SO2) correlated with amines under different pollution conditions. Under high RH, acid-base reactions were the dominant pathway for the gas-to-particle distribution of amines in urban areas, while direct dissolution dominated in the background site. To our knowledge, this study is the first attempt to conduct in situ measurements of particulate amines during different pollution conditions in China, and further research is needed to in-depth understanding of the influence of amines on haze formation.


Subject(s)
Air Pollutants , Air Pollution , Amines , Aerosols/analysis , Air Pollutants/analysis , Air Pollution/analysis , Amines/analysis , China , Dust , Environmental Monitoring , Humidity , Oxidation-Reduction , Particulate Matter/analysis , Rivers , Water
15.
Environ Sci Technol ; 56(3): 1951-1962, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35015551

ABSTRACT

Although chlorinated organophosphate esters (Cl-OPEs) have been reported to be ubiquitously distributed in various anoxic environments, little information is available on their fate under anoxic conditions. In this study, we report two Dehalococcoides-containing enrichment cultures that transformed 3.88 ± 0.22 µmol tris(2-chloroethyl) phosphate (TCEP) and 2.61 ± 0.02 µmol tris(1-chloro-2-propyl) phosphate (TCPP) within 10 days. Based on the identification of the transformed products and deuteration experiments, we inferred that TCEP may be transformed to generate bis(2-chloroethyl) phosphate and ethene via one-electron transfer (radical mechanism), followed by C-O bond cleavage. Ethene was subsequently reduced to ethane. Similarly, TCPP was transformed to form bis(1-chloro-2-propyl) phosphate and propene. 16S rRNA gene amplicon sequencing and quantitative polymerase chain reaction analysis revealed that Dehalococcoides was the predominant contributor to the transformation of TCEP and TCPP. Two draft genomes of Dehalococcoides assembled from the metagenomes of the TCEP- and TCPP-transforming enrichment cultures contained 14 and 15 putative reductive dehalogenase (rdh) genes, respectively. Most of these rdh genes were actively transcribed, suggesting that they might contribute to the transformation of TCEP and TCPP. Taken together, this study provides insights into the role of Dehalococcoides during the transformation of representative Cl-OPEs.


Subject(s)
Flame Retardants , Dehalococcoides , Esters , Flame Retardants/analysis , Organophosphates/analysis , Phosphates , RNA, Ribosomal, 16S/genetics
16.
Sci Total Environ ; 816: 151595, 2022 Apr 10.
Article in English | MEDLINE | ID: mdl-34774933

ABSTRACT

Reactivity of iron sulfide (FeS) towards hexabromocyclododecane (HBCD) was explored under conditions of varying temperature, pH, inorganic ion and dissolved organic matter (DOM) in this study. Results show that the reduction of HBCD by FeS has an activation energy of 29.2 kJ mol-1, suggesting that the rate-limiting step in the reduction was a surface-mediated reaction. The reduction of HBCD by FeS was a highly pH-dependent process. The optimal rate for HBCD reduction by FeS was observed at a pH of 6.2. All the tested inorganic ions suppressed the reduction of HBCD by FeS. XPS analysis confirmed that both Fe(II)-S and bulk S(-II) on FeS surface could be impacted by solution pH and inorganic ions and were responsible for the regulation of HBCD reduction. Some DOMs (i.e., fulvic acid, humic acid, salicylic acid, catechol and sodium dodecyl sulfate) were found to hinder the reduction via competing with HBCD for active sites on FeS surface. However, the presence of 2,2'-bipyridine, triton X-100 and cetyltrimethyl ammonium bromide was able to significantly enhance the rate of HBCD reduction by 5.8, 9.0 and 20 times, respectively. Different factors could influence the reduction efficiency of HBCD diastereoisomers to different extent, but not the reaction orders of HBCD diastereoisomers (α-HBCD < γ-HBCD < ß-HBCD). Moreover, FeS could completely remove HBCD diastereoisomers in sediments with multiple factors within 9 d reaction. Our results contribute to give a better understanding on the performance of FeS towards HBCD under real and complex conditions and facilitate the application of FeS in remediation sites.


Subject(s)
Hydrocarbons, Brominated , Humic Substances
17.
Environ Pollut ; 293: 118563, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34838709

ABSTRACT

Polybrominated dibenzo-p-dioxins/furans (PBDD/Fs) and polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) share similar toxicities and thermal origins, e.g., municipal solid waste incinerator (MSWI). Recently, PBDD/Fs from MSWI attracted rising concern because their important precursors, i.e., brominated flame retardants (BFRs), were frequently found in various wastes for landfill or MSWI feedstock. So far, however, little is known about PBDD/Fs and their associated risks in the vicinal environments of MSWI. Here we analyzed PBDD/Fs and PCDD/Fs in 29 soil samples collected around a multiyear large-scale MSWI, and compared their spatial distributions, sources and risks. PBDD/Fs demonstrated comparable concentrations and toxic equivalent quantities (TEQs) to PCDD/Fs in these samples. Spatially, both the concentrations of PBDD/Fs and PCDD/Fs decreased outwards from the MSWI, and exhibited significant linear correlations with the distances from the MSWI in the southeast downwind soil, suggesting the influence of the MSWI on its vicinal soil environment. However, the existence of other dioxin sources concealed its influence beyond 6 km. PBDD/Fs in the soils were characterized by highly-brominated PBDFs, especially Octa-BDF, and their sources were diagnosed as the MSWI and diesel exhaust; PCDD/Fs, however, were dominated by highly-chlorinated PCDDs, particularly Octa-CDD, and were contributed individually or jointly by the MSWI, automobile exhaust and pentachlorophenol (PCP)/Na-PCP. The non-carcinogenic risks of dioxins in all the soil samples were acceptable, but their carcinogenic risks in 17% of the samples were unacceptable. These samples were all located close to the MSWI and highways, therefore, the land use of these two high-risk zones should be cautiously planed.


Subject(s)
Dioxins , Polychlorinated Dibenzodioxins , Dibenzofurans/analysis , Dioxins/analysis , Environmental Monitoring , Furans , Polychlorinated Dibenzodioxins/analysis , Soil , Solid Waste
18.
Environ Sci Technol ; 56(1): 119-130, 2022 01 04.
Article in English | MEDLINE | ID: mdl-34882389

ABSTRACT

N-containing organic compounds (NOCs) in humic-like substances (HULIS) emitted from biomass burning (BB) and coal combustion (CC) were characterized by ultrahigh-resolution mass spectrometry in the positive electrospray ionization mode. Our results indicate that NOCs include CHON+ and CHN+ groups, which are detected as a substantial fraction in both BB- and CC-derived HULIS, and suggest that not only BB but also CC is the potential important source of NOCs in the atmosphere. The CHON+ compounds mainly consist of reduced nitrogen compounds with other oxygenated functional groups, and straw- and coal-smoke HULIS exhibit a lower degree of oxidation than pine-smoke HULIS. In addition, the NOCs with higher N atoms (N2 and/or N3) generally bear higher modified aromaticity index (AImod) values and are mainly contained in BB HULIS, especially in straw-smoke HULIS, whereas the NOCs with a lower N atom (N1) always have relatively lower AImod values and are the dominant NOCs in CC HULIS. These findings imply that the primary emission from CC may be a significant source of N1 compounds, whereas high N number (e.g., N2-3) compounds could be associated with burning of biomass materials. Further study is warranted to distinguish the NOCs from more sources.


Subject(s)
Air Pollutants , Coal , Aerosols/analysis , Air Pollutants/analysis , Biomass , Environmental Monitoring , Humic Substances/analysis , Nitrogen/analysis , Nitrogen Compounds/analysis , Particulate Matter/analysis
19.
Chemosphere ; 278: 130439, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33836401

ABSTRACT

The metal-binding characteristics of water-soluble organic matter (WSOM) emitted from biomass burning (BB, i.e., rice straw (RS) and corn straw (CS)) with Cu(II) under various pH conditions (i.e., 3, 4.5, and 6) were comprehensively investigated. Two-dimensional correlation spectroscopy (2D-COS) and excitation-emission matrix (EEM) -PARAFAC analysis were applied to investigate the binding affinity and mechanism of BB WSOM. The results showed that pH was a sensitive factor affecting binding affinities of WSOM, and BB WSOMs were more susceptible to bind with Cu(II) at pH 6.0 than pH 4.5, followed by pH 3.0. Therefore, the Cu(II)-binding behaviors of BB WSOMs at pH 6.0 were then investigated in this study. The 2D-absorption-COS revealed that the preferential binding with Cu(II) was in the order short and long wavelengths (237-239 nm and 307-309 nm) > moderate wavelength (267-269 nm). The 2D-synchronous fluorescence-COS results suggested that protein-like substances generally exhibited a higher susceptibility and preferential interaction with Cu(II) than fulvic-like substances. EEM-PARAFAC analysis demonstrated that protein-like (C1) substances had a greater complexation ability than fulvic-like (C2) and humic-like (C3) substances for both BB WSOM. This indicated that protein-like substances within WSOM played dominant roles in the interaction with Cu(II). As a comparison, RS WSOM generally showed stronger complexation capacity than CS WSOM although they exhibited similar chemical properties and compositions. This suggested the occurrence of heterogeneous active metal-binding sites even within similar chromophores for different WSOM. The results enhanced our understanding of binding behaviors of BB WSOM with Cu(II) in relevant atmospheric environments.


Subject(s)
Copper , Humic Substances , Biomass , Factor Analysis, Statistical , Humic Substances/analysis , Hydrogen-Ion Concentration , Spectrometry, Fluorescence , Water
20.
Sci Total Environ ; 778: 146107, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33714091

ABSTRACT

A new method is presented for measuring atmospheric contents and δ34S-SO42- in airborne particulate matter using quartz wool disk passive air samplers (Pas-QW). The ability of Pas-QW samplers to provide time-integrated measurements of atmospheric SO42- was confirmed in a field calibration study. The average sampling rate of SO42- measured was 2.3 ± 0.3 m3/day, and this was not greatly affected by changes in meteorological parameters. The results of simultaneous sampling campaign showed that the average SO42- contents in Pakistan and the Indochina Peninsula (ICP) were relatively lower than that of China. The spatial distribution of SO42- concentrations was largely attributed to the development of the regional economies. The range of δ34S values observed in Pakistan (4.3 ± 1.4‰) and the ICP (4.5 ± 1.2‰) were relatively small, while a large range of δ34S values was observed in China (3.9 ± 2.5‰). The regional distribution of sulfur isotope compositions was significantly affected by coal combustion. A source analysis based on a Bayesian mixing model showed that 80.4 ± 13.1% and 19.6 ± 13.1% of artificial sulfur dioxide (SO2) sources in China could be attributed to coal combustion and oil combustion, respectively. The two sources differed greatly between regions, and the contribution of oil combustion in cities was higher than previously reported data obtained from emission inventories. This study confirmed that the Pas-QW is a promising tool for simultaneously monitoring atmospheric δ34S-SO42- over large regions, and that the results of the isotope models can provide a reference for the compilation of SO2 emission inventories.

SELECTION OF CITATIONS
SEARCH DETAIL
...