Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Immunol ; 15: 1374486, 2024.
Article in English | MEDLINE | ID: mdl-38745651

ABSTRACT

A universal recombinant adenovirus type-5 (Ad5) vaccine against COVID19 (Ad-US) was constructed, and immunogenicity and broad-spectrum of Ad5-US were evaluated with both intranasal and intramuscular immunization routes. The humoral immune response of Ad5-US in serum and bronchoalveolar lavage fluid were evaluated by the enzyme-linked immunosorbent assay (ELISA), recombinant vesicular stomatitis virus based pseudovirus neutralization assay, and angiotensin-converting enzyme-2 (ACE2) -binding inhibition assay. The cellular immune response and Th1/Th2 biased immune response of Ad5-US were evaluated by the IFN-γ ELISpot assay, intracellular cytokine staining, and Meso Scale Discovery (MSD) profiling of Th1/Th2 cytokines. Intramuscular priming followed by an intranasal booster with Ad5-US elicited the broad-spectrum and high levels of IgG, IgA, pseudovirus neutralizing antibody (PNAb), and Th1-skewing of the T-cell response. Overall, the adenovirus type-5 vectored universal SARS-CoV-2 vaccine Ad5-US was successfully constructed, and Ad5-US was highly immunogenic and broad spectrum. Intramuscular priming followed by an intranasal booster with Ad5-US induced the high and broad spectrum systemic immune responses and local mucosal immune responses.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Genetic Vectors , SARS-CoV-2 , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , COVID-19/prevention & control , COVID-19/immunology , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Animals , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Mice , Humans , Female , Vaccines, Synthetic/immunology , Vaccines, Synthetic/administration & dosage , Adenoviridae/genetics , Adenoviridae/immunology , Mice, Inbred BALB C , Administration, Intranasal , Injections, Intramuscular , Immunity, Humoral , Cytokines/metabolism , Immunity, Cellular
2.
J Med Virol ; 96(3): e29454, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38445768

ABSTRACT

Various vaccines have been challenged by SARS-CoV-2 variants. Here, we reported a yeast-derived recombinant bivalent vaccine (Bivalent wild-type [Wt]+De) based on the wt and Delta receptor-binding domain (RBD). Yeast derived RBD proteins based on the wt and Delta mutant were used as the prime vaccine. It was found that, in the presence of aluminium hydroxide (Alum) and unmethylated CpG-oligodeoxynucleotides (CpG) adjuvants, more cross-protective immunity against SARS-CoV-2 prototype and variants were elicited by bivalent vaccine than monovalent wtRBD or Delta RBD. Furthermore, a heterologous boosting strategy consisting of two doses of bivalent vaccines followed by one dose adenovirus vectored vaccine exhibited cross-neutralization capacity and specific T cell responses against Delta and Omicron (BA.1 and BA.4/5) variants in mice, superior to a homologous vaccination strategy. This study suggested that heterologous prime-boost vaccination with yeast-derived bivalent protein vaccine could be a potential approach to address the challenge of emerging variants.


Subject(s)
COVID-19 , Vaccines , Animals , Mice , Vaccines, Combined , Fungal Proteins , Saccharomyces cerevisiae/genetics , COVID-19/prevention & control , SARS-CoV-2 , Vaccination
3.
Front Immunol ; 14: 1288879, 2023.
Article in English | MEDLINE | ID: mdl-37954577

ABSTRACT

Introduction: Rabies is a serious public health problem worldwide for which an effective treatment method is lacking but can be prevented by vaccines. Current vaccines are produced in cell or egg cultures, which are both costly and time consuming. Methods: Here, a non-replicating mRNA vaccine (RV021) encoding the rabies virus glycoprotein was developed in vitro, and its immunogenicity and protective efficacy against live virus was evaluated in mice. Results: A two-dose vaccination with 1 µg of RV021 at 7-day intervals induced a protective level of neutralizing antibody that was maintained for at least 260 days. RV021 induced a robust cellular immune response that was significantly superior to that of an inactivated vaccine. Two doses of 1 µg RV021 provided full protection against challenge with CVS of 30~60-fold lethal dose, 50%. Vaccine potency testing (according to the National Institutes of Health) in vivo revealed that the potency of RV021 at 15 µg/dose was 7.5 IU/dose, which is substantially higher than the standard for lot release of rabies vaccines for current human use. Conclusion: The mRNA vaccine RV021 induces a strong protective immune response in mice, providing a new and promising strategy for human rabies prevention and control.


Subject(s)
Rabies Vaccines , Rabies virus , Rabies , United States , Animals , Humans , Mice , Rabies/prevention & control , Rabies Vaccines/genetics , Antibodies, Viral , Antibodies, Neutralizing , Rabies virus/genetics
4.
Vaccines (Basel) ; 11(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37243063

ABSTRACT

Live attenuated vaccine is one of the most effective vaccines against flavivirus. Recently, site-directed mutation of the flavivirus genome using reverse genetics techniques has been used for the rapid development of attenuated vaccines. However, this technique relies on basic research of critical virulence loci of the virus. To screen the attenuated sites in dengue virus, a total of eleven dengue virus type four mutant strains with deletion of N-glycosylation sites in the NS1 protein were designed and constructed. Ten of them (except for the N207-del mutant strain) were successfully rescued. Out of the ten strains, one mutant strain (N130del+207-209QQA) was found to have significantly reduced virulence through neurovirulence assay in suckling mice, but was genetically unstable. Further purification using the plaque purification assay yielded a genetically stable attenuated strain #11-puri9 with mutations of K129T, N130K, N207Q, and T209A in the NS1 protein and E99D in the NS2A protein. Identifying the virulence loci by constructing revertant mutant and chimeric viruses revealed that five amino acid adaptive mutations in the dengue virus type four non-structural proteins NS1 and NS2A dramatically affected its neurovirulence and could be used in constructing attenuated dengue chimeric viruses. Our study is the first to obtain an attenuated dengue virus strain through the deletion of amino acid residues at the N-glycosylation site, providing a theoretical basis for understanding the pathogenesis of the dengue virus and developing its live attenuated vaccines.

5.
Front Immunol ; 14: 1142394, 2023.
Article in English | MEDLINE | ID: mdl-37006275

ABSTRACT

The ongoing evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) variants has been associated with the transmission and pathogenicity of COVID-19. Therefore, exploring the optimal immunisation strategy to improve the broad-spectrum cross-protection ability of COVID-19 vaccines is of great significance. Herein, we assessed different heterologous prime-boost strategies with chimpanzee adenovirus vector-based COVID-19 vaccines plus Wuhan-Hu-1 (WH-1) strain (AdW) and Beta variant (AdB) and mRNA-based COVID-19 vaccines plus WH-1 strain (ARW) and Omicron (B.1.1.529) variant (ARO) in 6-week-old female BALB/c mice. AdW and AdB were administered intramuscularly or intranasally, while ARW and ARO were administered intramuscularly. Intranasal or intramuscular vaccination with AdB followed by ARO booster exhibited the highest levels of cross-reactive IgG, pseudovirus-neutralising antibody (PNAb) responses, and angiotensin-converting enzyme-2 (ACE2)-binding inhibition rates against different 2019-nCoV variants among all vaccination groups. Moreover, intranasal AdB vaccination followed by ARO induced higher levels of IgA and neutralising antibody responses against live 2019-nCoV than intramuscular AdB vaccination followed by ARO. A single dose of AdB administered intranasally or intramuscularly induced broader cross-NAb responses than AdW. Th1-biased cellular immune response was induced in all vaccination groups. Intramuscular vaccination-only groups exhibited higher levels of Th1 cytokines than intranasal vaccination-only and intranasal vaccination-containing groups. However, no obvious differences were found in the levels of Th2 cytokines between the control and all vaccination groups. Our findings provide a basis for exploring vaccination strategies against different 2019-nCoV variants to achieve high broad-spectrum immune efficacy.


Subject(s)
COVID-19 , Viral Vaccines , Female , Humans , Animals , Mice , COVID-19 Vaccines , SARS-CoV-2 , COVID-19/prevention & control , RNA, Messenger , Immunization , Vaccination , Antibodies, Neutralizing , Immunity, Cellular
6.
Emerg Microbes Infect ; 11(1): 1890-1899, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35775819

ABSTRACT

The efficacy of many coronavirus disease 2019 (COVID-19) vaccines has been shown to decrease to varying extents against new severe acute respiratory syndrome coronavirus 2 variants, which are responsible for the continuing COVID-19 pandemic. Combining intramuscular and intranasal vaccination routes is a promising approach for achieving more potent immune responses. We evaluated the immunogenicity of prime-boost protocols with a chimpanzee adenovirus serotype 68 vector-based vaccine, ChAdTS-S, administered via both intranasal and intramuscular routes in BALB/c mice. Intramuscular priming followed by an intranasal booster elicited the highest levels of IgG, IgA, and pseudovirus neutralizing antibody titres among all the protocols tested at day 42 after prime immunization compared with the intranasal priming/intramuscular booster and prime-boost protocols using only one route. In addition, intramuscular priming followed by an intranasal booster induced high T-cell responses, measured using the IFN-γ ELISpot assay, that were similar to those observed upon intramuscular vaccination. All ChAdTS-S vaccination groups induced Th1-skewing of the T-cell response according to intracellular cytokine staining and Meso Scale Discovery cytokine profiling assays on day 56 after priming. This study provides reference data for assessing vaccination schemes of adenovirus-based COVID-19 vaccines with high immune efficacy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adenoviridae/genetics , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines/immunology , Cytokines , Immunity, Cellular , Immunity, Humoral , Immunization, Secondary , Mice , Mice, Inbred BALB C , Pan troglodytes , SARS-CoV-2 , Vaccination
7.
Viruses ; 14(6)2022 06 09.
Article in English | MEDLINE | ID: mdl-35746724

ABSTRACT

Since the first isolation in 1943, the dengue virus (DENV) has spread throughout the world, but effective antiviral drugs or vaccines are still not available. To provide a more stable reporter DENV for vaccine development and antiviral drug screening, we constructed a reporter DENV containing the NanoLuc reporter gene, which was inserted into the 5' untranslated region and capsid junction region, enabling rapid virus rescue by in vitro ligation. In addition, we established a live imaging mouse model and found that the reporter virus maintained the neurovirulence of prototype DENV before engineering. DENV-4 exhibited dramatically increased neurovirulence following a glycosylation site-defective mutation in the envelope protein. Significant mice mortality with neurological onset symptoms was observed after intracranial infection of wild-type (WT) mice, thus providing a visualization tool for DENV virulence assessment. Using this model, DENV was detected in the intestinal tissues of WT mice after infection, suggesting that intestinal lymphoid tissues play an essential role in DENV pathogenesis.


Subject(s)
Dengue Virus , Dengue , Animals , Antiviral Agents/pharmacology , Genes, Reporter , Luciferases/genetics , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...