Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Microsc ; 283(2): 93-101, 2021 08.
Article in English | MEDLINE | ID: mdl-33797077

ABSTRACT

Through-focus scanning optical microscopy (TSOM) is a model-based nanoscale metrology technique which combines conventional bright-field microscopy and the relevant numerical simulations. A TSOM image is generated after through-focus scanning and data processing. However, the mechanical vibration and optical noise introduced into the TSOM image during image generation can affect the measurement accuracy. To reduce this effect, this paper proposes a imaging error compensation method for the TSOM image based on deep learning with U-Net. Here, the simulated TSOM image is regarded as the ground truth, and the U-Net is trained using the experimental TSOM images by means of a supervised learning strategy. The experimental TSOM image is first encoded and then decoded with the U-shaped structure of the U-Net. The difference between the experimental and simulated TSOM images is minimised by iteratively updating the weights and bias factors of the network, to obtain the compensated TSOM image. The proposed method is applied for optimising the TSOM images for nanoscale linewidth estimation. The results demonstrate that the proposed method performs as expected and provides a significant enhancement in accuracy.


Subject(s)
Deep Learning , Microscopy , Optical Phenomena
2.
J Microsc ; 283(2): 117-126, 2021 08.
Article in English | MEDLINE | ID: mdl-33826151

ABSTRACT

Through-focus scanning optical microscopy (TSOM) is an economical, non-contact and nondestructive method for rapid measurement of three-dimensional nanostructures. There are two methods using TSOM image to measure the dimensions of one sample, including the library-matching method and the machine-learning regression method. The first has the defects of small measurement range and strict environmental requirements; the other has the disadvantages of feature extraction method greatly influenced by human subjectivity and low measurement accuracy. To solve the problems above, a TSOM dimensional measurement method based on deep-learning classification model is proposed. TSOM images are used to train the ResNet50 and DenseNet121 classification model respectively in this paper, and the test images are used to test the model, the classification result of which is taken as the measurement value. The test results showed that with the number of training linewidths increasing, the mean square error (MSE) of the test images is 21.05 nm² for DenseNet121 model and 31.84 nm² for ResNet50 model, both far lower than machine-learning regression method, and the measurement accuracy is significantly improved. The feasibility of using deep-learning classification model, instead of machine-learning regression model, for dimensional measurement is verified, providing a theoretical basis for further improvement on the accuracy of dimensional measurement.


Subject(s)
Deep Learning , Humans , Machine Learning , Microscopy , Optical Phenomena
3.
Opt Express ; 28(5): 6294-6305, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225881

ABSTRACT

Through-focus scanning optical microscopy (TSOM) is a high-efficient, low-costed, and nondestructive model-based optical nanoscale method with the capability of measuring semiconductor targets from nanometer to micrometer level. However, some instability issues resulted from lateral movement of the target and angular illuminating non-uniformity during the collection of through-focus (TF) images restrict TSOM's potential applications so that considerable efforts are needed to align optical elements before the collection and correct the experimental TSOM image before differentiating the experimental TSOM image from simulated TSOM image. An improved corrected TSOM method using Fourier transform is herein presented in this paper. First, a series of experimental TF images are collected through scanning the objective of the optical microscopy, and the ideally simulated TF images are obtained by a full-vector formulation. Then, each experimental image is aligned to its corresponding simulated counterpart before constructing the TSOM image. Based on the analysis of precision and repeatability, this method demonstrates its capability to improve the performance of TSOM, and the promising possibilities in application of online and in-machine measurements.

4.
Opt Express ; 27(23): 33978-33998, 2019 Nov 11.
Article in English | MEDLINE | ID: mdl-31878456

ABSTRACT

Through-focus scanning optical microscopy (TSOM) is an economical and nondestructive method for measuring three-dimensional nanostructures. After obtaining a TSOM image, a library-matching method is typically used to interpret optical intensity information and determine the dimensions of a measurement target. To further improve dimensional measurement accuracy, this paper proposes a machine learning method that extracts texture information from TSOM images. The method extracts feature vectors of TSOM images in terms of the Gray-level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP), and Histogram of Oriented Gradient (HOG). We tested models trained with these vectors in isolation, in pairs, and a combination of all three to test seven possible feature vectors. Once normalized, these feature vectors were then used to train and test three machine-learning regression models: random forest, GBDT, and AdaBoost. Compared with the results of the library-matching method, the measurement accuracy of the machine learning method is considerably higher. When detecting dimensional features that fall into a wide range of sizes, the AdaBoost model used with the combined LBP and HOG feature vectors performs better than the others. For detecting dimensional features within a narrower range of sizes, the AdaBoost model combined with HOG feature extraction algorithm performs better.

SELECTION OF CITATIONS
SEARCH DETAIL
...