Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Talanta ; 277: 126379, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852343

ABSTRACT

Mercury (Hg) is a notorious toxic heavy metal, causing neurotoxicity and liver damage, posing grave threats to human health and environmental safety. There is an urgent imperative for developing novel Hg2+ detection methods. In this work, we developed a CRISPR-based method for Hg2+ detection named CRISPR-Hg. A CRISPR/Cas12a system was employed and could be activated by the PCR product, generating fluorescence signals based on the trans-cleavage activity. CRISPR-Hg exhibited remarkable selectivity and specificity, achieving a detection limit of 10 pM and minimal interference with background signals. This approach has been successfully applied to detect Hg2+ in real samples, including water, soil, and mushroom. Ulteriorly, a portable device was devised to streamline the readout of fluorescence signals by a smartphone within 30 min. We offer an affordable, highly selective and visually interpretable method for Hg2+ detection, with the potential for broad application in Hg2+ monitoring for food safety and public health.

2.
Small ; : e2310637, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593369

ABSTRACT

Constructing multiheteroatom coordination structure in carbonaceous substrates demonstrates an effective method to accelerate the oxygen reduction reaction (ORR) of supported single-atom catalyst. Herein, the novel etching route assisted by potassium thiocyanate (KCNS) is developed to convert metal-organic framework to 2D defect-rich porous N,S-co-doped carbon nanosheets for anchoring atomically dispersed iron sites as the high-performance ORR catalysts (Fe-SACs). The well-designed KCNS-assisted etching route can generate spatial confinement template to direct the carbon nanosheet formation, etching condition to form defect-rich structure, and additional sulfur atoms to coordinate iron species. Spectral and microscopy analysis reveals that the iron element in Fe-SACs is highly isolated on carbon nanosheet and anchored by nitrogen and sulfur atoms in unsymmetrical Fe-S1N3 structure. The optimized Fe-SACs with large specific surface area could show remarkable alkaline ORR performances with a high half-wave potential of 0.920 V versus RHE and excellent durability. The rechargeable zinc-air battery assembled with Fe-SACs air electrodes delivers a large power density of 350 mW cm-2 and a stable voltage platform during charge and discharge over more than 1300 h. This work proposes a novel strategy for the preparation of single-atom catalysts with multiheteroatom coordination structure and highly exposed active sites for efficient ORR.

3.
Food Funct ; 15(1): 79-95, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38031758

ABSTRACT

In this study, a polysaccharide known as PAPS2 was eluted from Pleurotus abieticola fruiting bodies using 0.1 M NaCl solutions. PAPS2 has a Mw of 19.64 kDa and its backbone is mainly composed of →6)-α-D-Galp-(1→, →6)-ß-D-Glcp-(1→ and →2,6)-α-D-Galp-(1→ residues, and its branches mainly end with ß-D-Manp-(1→, which is attached at C2 of →2,6)-α-D-Galp-(1→. PAPS2 elicited several effects in high-fat diet (HFD)-fed ApoE-/- mice. It significantly reduced the body weight, liver index, and serum levels of total cholesterol (TC) and triglycerides (TGs), and it alleviated lipid accumulation in the aorta. Intestinal microflora analysis showed that PAPS2 suppressed the abundances of Adlercreutzia, Turicibacter, and Helicobacter and enriched that of Roseburia. It also influenced lipid metabolism, suggesting that it reduced the levels of TGs, lysophosphatidylcholine (LPC), phosphatidylcholine (PC), and ceramide (Cer). Moreover, it suppressed oxidative response by increasing nuclear factor erythroid 2 (Nrf2)-related factor expression and activating the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to reduce the level of reactive oxygen species (ROS). Meanwhile, it showed anti-inflammatory effects partially related to the inhibition of toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) signaling induced by lipopolysaccharide (LPS) in RAW 264.7 cells, as well as in the aorta of HFD-fed ApoE-/- mice. This study provides experimental evidence of the auxiliary applicability of PAPS2 in atherosclerosis treatment.


Subject(s)
Atherosclerosis , NF-kappa B , Mice , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , Atherosclerosis/drug therapy , Atherosclerosis/genetics , Atherosclerosis/metabolism , Polysaccharides/pharmacology , Triglycerides/metabolism , Apolipoproteins E/genetics
4.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36498978

ABSTRACT

Connexin 26 (Cx26) is a protein that constitutes a gap junction and is widely expressed in the liver. Abnormal expression of Cx26 is one of the important mechanisms of liver cancer, and is closely related to the transmission of radiation damage signals between cells. In the present study, we investigated the radiosensitivity of hepatocellular carcinoma (HCC) cells HepG2, with low expression of Cx26, and SK-hep-1, with high expression of Cx26 after X-ray irradiation. The cell survival, micronucleus formation and protein expressions of the mitogen-activated protein kinases (MAPK) signaling pathway were detected. The expression level of Cx26 could affect the radiosensitivity of liver cancer cells by affecting the phosphorylation of p38 and ERK proteins and regulating the expression of downstream NF-κB. Cell lines with knock-out and overexpression of Cx26 were also built to confirm the findings. Our results suggested that Cx26 might play an important role in the radiosensitivity of liver cancer and could be a potential target for clinical radiotherapy of liver cancer.


Subject(s)
Carcinoma, Hepatocellular , Connexin 26 , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/radiotherapy , Cell Line , Cell Line, Tumor , Connexin 26/genetics , Liver Neoplasms/genetics , Liver Neoplasms/radiotherapy , Mitogen-Activated Protein Kinases/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Signal Transduction , Radiation Tolerance
5.
Angew Chem Int Ed Engl ; 61(30): e202203903, 2022 Jul 25.
Article in English | MEDLINE | ID: mdl-35590467

ABSTRACT

The applications of nanoporous crystalline materials are closely related to the mass transfer of guest molecules. However, the fundamental knowledge of mass transfer, and in particular the surface barriers controlled by the permeation of guest molecules through the external surfaces of materials, is still incomplete. The diversity of surface permeability at the single-crystal level, caused by the varying origins of surface transport resistance, hinders the rational materials design and needs better understanding. Herein, we probe the molecular transport in single zeolite crystals with fluorescent 4-(4-diethylaminostyryl-1-methylpyridinium iodide) (DAMPI) using super-resolution structured illumination microscopy (SIM). It showed that both the inter- and intra-crystal diversity of surface barriers could be monitored by detecting the diffusion behaviors on the center and surface planes in single crystals. This adds a new perspective for studying the origins of the surface barriers as well as the molecular transport mechanisms in nanoporous materials.

6.
Angew Chem Int Ed Engl ; 59(49): 21945-21948, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32881203

ABSTRACT

Mass transfer of guest molecules has a significant impact on the applications of nanoporous crystalline materials and particularly shape-selective catalysis over zeolites. Control of mass transfer to alter reaction over zeolites, however, remains an open challenge. Recent studies show that, in addition to intracrystalline diffusion, surface barriers represent another transport mechanism that may dominate the overall mass transport rate in zeolites. We demonstrate that the methanol-to-olefins (MTO) reaction can be modulated by regulating surface permeability in SAPO-34 zeolites with improved chemical liquid deposition and acid etching. Our results explicitly show that the reduction of surface barriers can prolong catalyst lifetime and promote light olefins selectivity, which opens a potential avenue for improving reaction performance by controlling the mass transport of guest molecules in zeolite catalysis.

7.
Nat Commun ; 11(1): 3641, 2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32686677

ABSTRACT

Direct visualization of spatiotemporal evolution of molecules and active sites during chemical transformation in individual catalyst crystal will accelerate the intuitive understanding of heterogeneous catalysis. So far, widespread imaging techniques can only provide limited information either with large probe molecules or in model catalyst of large size, which are beyond the interests of industrial catalysis. Herein, we demonstrate a feasible deep data approach via synergy of multiscale reaction-diffusion simulation and super-resolution structured illumination microscopy to  illustrate the dynamical evolution of spatiotemporal distributions of gas molecules, carbonaceous species and acid sites in SAPO-34 zeolite crystals of several micrometers that are typically used in industrial methanol-to-olefins process. The profound insights into the inadequate utilization of activated acid sites and rapid deactivation are unveiled. The notable elucidation of molecular reaction-diffusion process  at the scale of single catalyst crystal via this approach opens an interesting method for mechanism study in materials synthesis and catalysis.

8.
ACS Appl Mater Interfaces ; 6(23): 20851-9, 2014 Dec 10.
Article in English | MEDLINE | ID: mdl-25405326

ABSTRACT

In this paper, we develop a facile strategy for fabricating a yolk-shell structured catalytic system that consists of a core made of Ru supported on mesoporous carbon, which is encaged within a silica shell that has ordered radial mesochannels. A region-selective etching mechanism for the formation of the yolk-shell nanoarchitectures is proposed based on the stronger adsorption ability of the carbon core for etching agent than that of the silica shell for etching agent. By combining such material with amyloglucosidase, one-pot hydrolysis-hydrogenation of dextrin to sorbitol can be conducted, delivering enhanced efficiency and showing great promise for biomass conversion applications.


Subject(s)
Biomass , Carbon/chemistry , Glucan 1,4-alpha-Glucosidase/chemistry , Nanostructures/chemistry , Catalysis , Dextrins/chemistry , Hydrolysis , Porosity , Sorbitol/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...