Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 15(5)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37242576

ABSTRACT

With the in-depth understanding of bone regeneration mechanisms and the development of bone tissue engineering, a variety of scaffold carrier materials with desirable physicochemical properties and biological functions have recently emerged in the field of bone regeneration. Hydrogels are being increasingly used in the field of bone regeneration and tissue engineering because of their biocompatibility, unique swelling properties, and relative ease of fabrication. Hydrogel drug delivery systems comprise cells, cytokines, an extracellular matrix, and small molecule nucleotides, which have different properties depending on their chemical or physical cross-linking. Additionally, hydrogels can be designed for different types of drug delivery for specific applications. In this paper, we summarize recent research in the field of bone regeneration using hydrogels as delivery carriers, detail the application of hydrogels in bone defect diseases and their mechanisms, and discuss future research directions of hydrogel drug delivery systems in bone tissue engineering.

2.
Cell Signal ; 108: 110694, 2023 08.
Article in English | MEDLINE | ID: mdl-37141927

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) microenvironment will accelerate the accumulation of Advanced glycation end products (AGEs), adipose-derived stem cells (ASCs) have poor osteogenesis in the DM microenvironment. Studies suggest autophagy plays a vital role in osteogenesis, but the mechanism of the altered osteogenic potential of ASCs has not been elucidated. Bone tissue engineering by ASCs is widely used in the treatment of bone defects with diabetic osteoporosis (DOP). Therefore, it is meaningful to explore the effect of AGEs on the osteogenic differentiation potential of ASCs and its potential mechanism for the repair of bone defects in DOP. MATERIALS AND METHODS: ASCs in C57BL/6 mice were isolated, cultured, then treated with AGEs, subsequently, cell viability and proliferation were detected through Cell Counting Kit 8 assay. 3-Methyladenine (3-MA), an autophagic inhibitor used to inhibit autophagic levels. Rapamycin (Rapa), an autophagy activator that further activated autophagy levels by inhibiting mTOR.The osteogenesis and autophagy changes of ASCs were analyzed by flow cytometry, qPCR, western blot, immunofluorescence, alkaline phosphatase (ALP) and alizarin red staining. RESULTS: AGEs reduced the autophagy level and osteogenic potential of ASCs. After 3-MA reduced autophagy, the osteogenic potential of ASCs also decreased. AGEs co-treatment with 3-MA, the levels of osteogenesis and autophagy reduced more significantly. When autophagy was activated by Rapa, it was found that it could rescue the reduced osteogenic potential of AGEs. CONCLUSIONS: AGEs reduce the osteogenic differentiation potential of ASCs through autophagy, and may provide a reference for the treatment of bone defects with diabetes osteoporosis.


Subject(s)
Diabetes Mellitus , Osteoporosis , Mice , Animals , Osteogenesis , Adipose Tissue , Mice, Inbred C57BL , Cell Differentiation , Stem Cells , Glycation End Products, Advanced/pharmacology , Cells, Cultured
3.
J Gene Med ; 25(5): e3481, 2023 05.
Article in English | MEDLINE | ID: mdl-36782035

ABSTRACT

BACKGROUND: Osteoporosis (OP) is a metabolic bone disease involving reduced bone mass. Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Emerging evidence suggests that methyltransferase-like 3 (METTL3) plays a significant role in bone development and metabolism. Therefore, this study investigates changes to METTL3 in the osteogenic differentiation of adipose stem cells in osteoporotic rats (OP-ASCs) and explores ways to enhance their osteogenic ability. METHODS: An animal model of osteoporosis was established by removing both ovaries in rats. Real-time PCR and western blotting were performed to detect the expression of METTL3 and bone-related molecules, including runt-related transcription factor 2 (Runx2) and osteopontin (Opn). Furthermore, alkaline phosphatase staining was used to confirm the osteogenic potential of stem cells. Mettl3 small interfering RNA and Mettl3 overexpression lentivirus were used to assess the role of METTL3 in osteogenic differentiation of ASCs and OP-ASCs. RESULTS: The osteogenic differentiation capacity and Mettl3 expression significantly decreased in OP-ASCs. Moreover, Mettl3 silencing down-regulated the osteogenic ability of ASCs, and overexpression of Mettl3 recovered the impaired osteogenic capacity in OP-ASCs in vitro. CONCLUSION: The Mettl3 expression levels and osteogenic potential of OP-ASCs decreased. However, overexpression of METTL3 rescued the osteogenic ability of OP-ASCs, providing a new target for treatment of osteoporotic bone defects.


Subject(s)
Osteogenesis , Osteoporosis , Rats , Animals , Adipose Tissue , Cell Differentiation , Stem Cells , Osteoporosis/metabolism , Methyltransferases , Cells, Cultured
4.
Int J Oral Sci ; 14(1): 23, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35477924

ABSTRACT

The significant clinical feature of bisphosphonate-related osteonecrosis of the jaw (BRONJ) is the exposure of the necrotic jaw. Other clinical manifestations include jaw pain, swelling, abscess, and skin fistula, which seriously affect the patients' life, and there is no radical cure. Thus, new methods need to be found to prevent the occurrence of BRONJ. Here, a novel nanoparticle, tFNA-KLT, was successfully synthesized by us, in which the nanoparticle tetrahedral framework nucleic acid (tFNA) was used for carrying angiogenic peptide, KLT, and then further enhanced angiogenesis. TFNA-KLT possessed the same characteristics as tFNA, such as simple synthesis, stable structure, and good biocompatibility. Meanwhile, tFNA enhanced the stability of KLT and carried more KLT to interact with endothelial cells. First, it was confirmed that tFNA-KLT had the superior angiogenic ability to tFNA and KLT both in vitro and in vivo. Then we apply tFNA-KLT to the prevention of BRONJ. The results showed that tFNA-KLT can effectively prevent the occurrence of BRONJ by accelerating angiogenesis. In summary, the prepared novel nanoparticle, tFNA-KLT, was firstly synthesized by us. It was also firstly confirmed by us that tFNA-KLT significantly enhanced angiogenesis and can effectively prevent the occurrence of BRONJ by accelerating angiogenesis, thus providing a new avenue for the prevention of BRONJ and a new choice for therapeutic angiogenesis.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Nanoparticles , Nucleic Acids , Angiogenic Proteins/therapeutic use , Bisphosphonate-Associated Osteonecrosis of the Jaw/drug therapy , Bisphosphonate-Associated Osteonecrosis of the Jaw/prevention & control , Endothelial Cells , Humans , Nucleic Acids/therapeutic use
5.
Cell Prolif ; 55(1): e13174, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34953002

ABSTRACT

OBJECTIVES: Bone tissue engineering based on adipose-derived stem cells (ASCs) is expected to become a new treatment for diabetic osteoporosis (DOP) patients with bone defects. However, compared with control ASCs (CON-ASCs), osteogenic potential of DOP-ASCs is decreased, which increased the difficulty of bone reconstruction in DOP patients. Moreover, the cause of the poor osteogenesis of ASCs in a hyperglycemic microenvironment has not been elucidated. Therefore, this study explored the molecular mechanism of the decline in the osteogenic potential of DOP-ASCs from the perspective of epigenetics to provide a possible therapeutic target for bone repair in DOP patients with bone defects. MATERIALS AND METHODS: An animal model of DOP was established in mice. CON-ASCs and DOP-ASCs were isolated from CON and DOP mice, respectively. AK137033 small interfering RNA (SiRNA) and an AK137033 overexpression plasmid were used to regulate the expression of AK137033 in CON-ASCs and DOP-ASCs in vitro. Lentiviruses that carried shRNA-AK137033 or AK137033 cDNA were used to knockdown or overexpress AK137033, respectively, in CON-ASCs and DOP-ASCs in vivo. Hematoxylin and eosin (H&E), Masson's, alizarin red, and alkaline phosphatase (ALP) staining, micro-computed tomography (Micro-CT), flow cytometry, qPCR, western blotting, immunofluorescence, and bisulfite-specific PCR (BSP) were used to analyze the functional changes of ASCs. RESULTS: The DOP mouse model was established successfully. Compared with CON-ASCs, AK137033 expression, the DNA methylation level of the sFrp2 promoter region, Wnt signaling pathway markers, and the osteogenic differentiation potential were decreased in DOP-ASCs. In vitro experiments showed that AK137033 silencing inhibited the Wnt signaling pathway and osteogenic ability of CON-ASCs by reducing the DNA methylation level in the sFrp2 promoter region. Additionally, overexpression of AK137033 in DOP-ASCs rescued these changes caused by DOP. Moreover, the same results were obtained in vivo. CONCLUSIONS: LncRNA-AK137033 inhibits the osteogenic potential of DOP-ASCs by regulating the Wnt signaling pathway via modulating the DNA methylation level in the sFrp2 promoter region. This study provides an important reference to find new targets for the treatment of bone defects in DOP patients.


Subject(s)
Adipose Tissue/cytology , DNA Methylation/genetics , Diabetes Mellitus/genetics , Osteogenesis/genetics , Osteoporosis/genetics , RNA, Long Noncoding/metabolism , Stem Cells/metabolism , Wnt Signaling Pathway , Animals , Cell Differentiation/genetics , Diabetes Mellitus/pathology , Disease Models, Animal , Gene Expression Profiling , Gene Expression Regulation , Gene Silencing , Hydroxyapatites/chemistry , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Tissue Scaffolds/chemistry , Wnt Signaling Pathway/genetics
6.
Stem Cells Dev ; 30(20): 1017-1027, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34486387

ABSTRACT

The incidence and morbidity of diabetes osteoporosis (DOP) are increasing with each passing year. Patients with DOP have a higher risk of bone fracture and poor healing of bone defects, which make a poor quality of their life. Bone tissue engineering based on autologous adipose-derived stem cells (ASCs) transplantation develops as an effective technique to achieve tissue regeneration for patients with bone defects. With the purpose of promoting auto-ASCs transplantation, this research project explored the effect of metformin on the osteogenic differentiation of ASCs under a high-glucose culture environment. In this study, we found that 40 mM high glucose inhibited the physiological function of ASCs, including cell proliferation, migration, and osteogenic differentiation. Indicators of osteogenic differentiation were all downregulated by 40 mM high glucose, including alkaline phosphatase activity, runt-related transcription factor 2, and osteopontin gene expression, and Wnt signaling pathway. At the same time, the cell autophagy makers BECLIN1 and microtubule-associated protein 1 light chain 3 (LC3 I/II) were decreased. While 0.1 mM metformin upregulated the expression of BECLIN1 and LC3 I/II gene and inhibited the expression of mammalian target of rapamycin (mTOR) and GSK3ß, it contributed to reverse the osteogenesis inhibition of ASCs caused by high glucose. When 3-methyladenine was used to block the activity of metformin, metformin could not exert its protective effect on ASCs. All the findings elaborated the regulatory mechanism of metformin in the high-glucose microenvironment to protect the osteogenic differentiation ability of ASCs. Metformin plays an active role in promoting the osteogenic differentiation of ASCs with DOP, and it may contribute to the application of ASCs transplantation for bone regeneration in DOP.


Subject(s)
Metformin , Osteogenesis , Adipose Tissue , Animals , Autophagy , Cell Differentiation/genetics , Cells, Cultured , Glucose/metabolism , Glucose/pharmacology , Humans , Mammals , Metformin/pharmacology , Osteogenesis/genetics , Rats , Stem Cells
8.
Cell Prolif ; 54(9): e13105, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34382270

ABSTRACT

OBJECTIVES: The nano-hydroxyapatite (nHAp) is widely used to develop imaging probes and drug carriers due to its excellent bioactivity and biocompatibility. However, traditional methods usually need cumbersome and stringent conditions such as high temperature and post-modification to prepare the functionalized nHAp, which do not benefit the particles to enter cells due to the increased particle size. Herein, a biomimetic synthesis strategy was explored to achieve the AS1411-targeted tumour dual-model bioimaging using DNA aptamer AS1411 as a template. Then, the imaging properties and the biocompatibility of the synthesized AS-nFAp:Gd/Tb were further investigated. MATERIALS AND METHODS: The AS-nFAp:Gd/Tb was prepared under mild conditions through a one-pot procedure with AS1411 as a template. Besides, the anticancer drug DOX was loaded to AS-nFAp:Gd/Tb so as to achieve the establishment of a multifunctional nano-probe that integrated the tumour diagnosis and treatment. The AS-nFAp:Gd/Tb was characterized by transmission electron microscopy (TEM), energy disperse X-ray Spectroscopy (EDS) mapping, X-ray photoelectron spectroscopy (XPS) spectrum, X-ray diffraction (XRD), fourier-transformed infrared (FTIR) spectroscopy, capillary electrophoresis analyses, zeta potential and particle sizes. The in vitro magnetic resonance imaging (MRI) and fluorescence imaging were performed on an MRI system and a confocal laser scanning microscope, respectively. The potential of the prepared multifunctional nHAp for a targeted tumour therapy was investigated by a CCK-8 kit. And the animal experiments were conducted on the basis of the guidelines approved by the Animal Care and Use Committee of Sichuan University, China. RESULTS: In the presence of AS1411, the as-prepared AS-nFAp:Gd/Tb presented a needle-like morphology with good monodispersity and improved imaging performance. Furthermore, due to the specific binding between AS1411 and nucleolin up-expressed in cancer cells, the AS-nFAp:Gd/Tb possessed excellent AS1411-targeted fluorescence and MRI imaging properties. Moreover, after loading chemotherapy drug DOX, in vitro and in vivo studies showed that DOX@AS-nFAp:Gd/Tb could effectively deliver DOX to tumour tissues and exert a highly effective tumour inhibition without systemic toxicity compared with pure DOX. CONCLUSIONS: The results indicated that the prepared multifunctional nHAp synthesized by a novel biomimetic strategy had outstanding capabilities of recognition and treatment for the tumour and had good biocompatibility; hence, it might have a potential clinical application in the future.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Aptamers, Nucleotide/chemistry , Durapatite/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Animals , Aptamers, Nucleotide/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Drug Carriers/chemistry , Female , Humans , Magnetic Resonance Imaging/methods , Mice , Mice, Nude , Microscopy, Electron, Transmission/methods , Oligodeoxyribonucleotides/pharmacology , Particle Size
9.
J Nanobiotechnology ; 19(1): 195, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34193184

ABSTRACT

BACKGROUND: The biomedical field has used gold nanorods (GNRs) for decades; however, clinical trials and translation is limited except gold nanoshells. The preparation of gold nanoshells is more complex than that of polyethylene glycol-modified GNRs (PEG-GNRs), and it is difficult to ensure uniform thickness. It is important to encourage and broaden the use of the star member (PEG-GNRs) of gold nanoparticles family for clinical translation. Existing studies on PEG-GNRs are limited with no relevant systematic progression in non-human primates. Herein, we assessed the systematic biocompatibility of PEG-GNRs in rats and clinically relevant Macaca fascicularis. RESULTS: In this small animal study, we administrated multiple doses of PEG-GNRs to rats and observed good biocompatibility. In the non-human primate study, PEG-GNRs had a longer blood half-life and produced a negligible immune response. Histological analysis revealed no significant abnormality. CONCLUSIONS: PEG-GNRs were well-tolerated with good biocompatibility in both small animals and large non-human primates. The information gained from the comprehensive systemic toxicity assessment of PEG-GNRs in M. fascicularis will be helpful for translation to clinical trials.


Subject(s)
Biocompatible Materials , Gold/chemistry , Metal Nanoparticles/therapeutic use , Nanotubes/chemistry , Animals , Chlorides , Gold Compounds , Macaca fascicularis , Male , Polyethylene Glycols , Rats , Urine
10.
ACS Appl Mater Interfaces ; 13(25): 29439-29449, 2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34137587

ABSTRACT

In a search for a solution to large-area soft and hard tissue defects, whether or not tissue regeneration or tissue-substitutes transplantation is used, the problems with angiogenesis need to be solved urgently. Thus, a new and efficient proangiogenic approach is needed. Nanoengineering systems have been considered one of the most promising approaches. In this study, we modify the tetrahedral framework nucleic acid (tFNA) for the first time with two different angiogenic DNA aptamers to form aptamer-tFNA nanostructures, tFNA-Apt02 and tFNA-AptVEGF, and the effects of them on angiogenesis both in vitro and in vivo are investigated. We develop new nanomaterials for enhancing angiogenesis to solve the problem of tissue engineering vascularization and ischemic diseases. The results of our study confirm that tFNA-Apt02 and tFNA-AptVEGF has a stronger ability to accelerate endothelial cell proliferation and migration, tubule formation, spheroid sprouting, and angiogenesis in vivo. We first demonstrate that the engineered novel tFNA-Apt02 and tFNA-AptVEGF have promoting effects on angiogenesis both in vitro and in vivo and provide a theoretical basis and opportunity for their application in tissues engineering vascularization and ischemic diseases.


Subject(s)
Angiogenesis Inducing Agents , Aptamers, Nucleotide , Nanostructures/chemistry , Neovascularization, Physiologic/drug effects , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/pharmacology , Animals , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Human Umbilical Vein Endothelial Cells , Humans , Mice , Mice, Nude , Nucleic Acids/chemistry , Nucleic Acids/pharmacology , Tissue Engineering
11.
Nanomicro Lett ; 13(1): 86, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-34138319

ABSTRACT

Obesity-induced insulin resistance is the hallmark of metabolic syndrome, and chronic, low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Current therapeutic approaches lack efficacy and immunomodulatory capacity. Thus, a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance. Here, we synthesized a tetrahedral framework nucleic acid (tFNA) nanoparticle that carried resveratrol (RSV) to inhibit tissue inflammation and improve insulin sensitivity in obese mice. The prepared nanoparticles, namely tFNAs-RSV, possessed the characteristics of simple synthesis, stable properties, good water solubility, and superior biocompatibility. The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy. In high-fat diet (HFD)-fed mice, the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status. tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages. As for adaptive immunity, the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg, leading to the alleviation of insulin resistance. Furthermore, this study is the first to demonstrate that tFNAs, a nucleic acid material, possess immunomodulatory capacity. Collectively, our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice, suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.

12.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 52(3): 423-429, 2021 May.
Article in Chinese | MEDLINE | ID: mdl-34018360

ABSTRACT

OBJECTIVE: To investigate the differences in the osteogenic capacity of osteoporotic adipose-derived stem cells (OP-ASCs) and normal control adipose-derived stem cells (Ctrl-ASCs), and to examine the expression levels of RNA methyltransferase like 14 (Mettl14) and the Notch signaling molecule 1 (Notch1). METHODS: The osteoporosis (OP) model of SD rats was established with ovariectomy (OVX). Micro-CT, HE staining and Masson staining were performed to identify the successful establishment of the OP model, OP-ASCs and Ctrl-ASCs were isolated and cultured adherently. Then, the three-way differentiation capacity of the adipose-derived stem cells (ASCs) was determined through alizarin red staining, alcian blue staining and oil red O staining and flow cytometry was conducted to examine the surface antigens CD29, CD44, CD90, CD31, CD34, and CD45. Alizarin red staining and comparison of the mRNA and protein expression of Run-related transcription factor 2 (Runx2) were done to explore the differences in osteogenic potential of OP-ASCs and Ctrl-ASCs. Real-time PCR and Western blot were performed to explore the expression differences of Mettl14 and Notch1 at mRNA and protein levels between OP-ASCs and Ctrl-ASCs. RESULTS: Micro-CT, HE and Masson staining results showed that the number of trabecular bone decreased and the spacing increased in the tibias of the osteoporosis group (OP group) compared with those of the control group (Ctrl group), indicating that the OP model was established successfully. Three-way differentiation and flow cytometry results confirmed the successful isolation and culture of ASCs. After osteogenic induction, alizarin red staining showed that OP-ASCs had fewer number and more scattered distribution of mineralized nodules than Ctrl-ASCs did. The expression of Runx2 in OP-ASCs was lower than that in Ctrl-ASCs ( P<0.05). Mettl14 as well as Notch1 showed lower expression in OP-ASCs than they did in Ctrl-ASCs ( P<0.05). CONCLUSION: The osteogenic capacity of OP-ASCs was lower compared with that of Ctrl-ASCs, Mettl14 expression of OP-ASCs was decreased compared with that of Ctrl-ASCs, and the Notch signaling pathway was inhibited in OP-ASCs. The study helps build the foundation for further investigation in the specific mechanisms of Mettl14 and Notch1 during osteogenic differentiation of OP-ASCs.


Subject(s)
Osteogenesis , Stem Cells , Adipocytes , Adipose Tissue , Animals , Cell Differentiation , Cells, Cultured , Female , Humans , Methyltransferases , Rats , Rats, Sprague-Dawley , Receptor, Notch1/genetics
13.
ACS Appl Mater Interfaces ; 13(10): 11708-11720, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656845

ABSTRACT

Conventional antiangiogenetic inhibitors suffered from poor delivery problems that result in unsatisfactory antitumor treatment efficacy. Although the liposomes or nanomaterial-based delivery systems can improve the therapeutic efficacy of antiangiogenic molecules, the assembly process is far too complex. Herein, a nanomaterial or a new nanodrug that could work without the help of a carrier and could be easily synthesized is needed. Au nanoclusters (AuNCs) are a kind of ideal nanostructures that could spontaneously enter into the cell and could be synthesized by a relatively easy one-pot method. Here, changing the traditional ligand glutathione (GSH) into an anti-Flt1 peptide (AF) has enriched the newly synthesized AF@AuNCs with targeted antiangiogenic properties. Based on the specific binding between AF and vascular endothelial growth factor receptor 1 (VEGFR1), the interaction between VEGFR1 and its ligands could be blocked. Furthermore, the expression of VEGFR2 could be downregulated. Compared with pure AF peptide- and GSH-participated AuNCs (GSH@AuNCs), AF@AuNCs were more effective in inhibiting both tube formation and migration of the endothelial cells in vitro. Furthermore, the in vivo chick embryo chorioallantoic membrane (CAM) experiment and antitumor experiment were conducted to further verify the enhanced antiangiogenesis and tumor inhibition effect of AF@AuNCs. Our findings provide promising evidence of a carrier-free nanodrug for tumors and other vascular hyperproliferative diseases.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Gold/chemistry , Metal Nanoparticles/chemistry , Neoplasms/drug therapy , Peptides/administration & dosage , Angiogenesis Inhibitors/therapeutic use , Animals , Cell Line, Tumor , Drug Carriers/chemistry , Glutathione/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Neoplasms/metabolism , Peptides/therapeutic use , Vascular Endothelial Growth Factor Receptor-1/antagonists & inhibitors , Vascular Endothelial Growth Factor Receptor-1/metabolism
14.
Stem Cell Res Ther ; 12(1): 120, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33579371

ABSTRACT

BACKGROUND: Diabetic osteoporosis (DOP) is a systemic metabolic bone disease caused by diabetes mellitus (DM). Adipose-derived stem cells (ASCs) play an important role in bone regeneration. Our previous study confirmed that ASCs from DOP mice (DOP-ASCs) have a lower osteogenesis potential compared with control ASCs (CON-ASCs). However, the cause of this poor osteogenesis has not been elucidated. Therefore, this study investigated the underlying mechanism of the decline in the osteogenic potential of DOP-ASCs from the perspective of epigenetics and explored methods to enhance their osteogenic capacity. METHODS: The expression level of JNK1-associated membrane protein (JKAMP) and degree of DNA methylation in CON-ASCs and DOP-ASCs were measured by mRNA expression profiling and MeDIP sequencing, respectively. JKAMP small interfering RNA (siRNA) and a Jkamp overexpression plasmid were used to assess the role of JKAMP in osteogenic differentiation of CON-ASCs and DOP-ASCs. Immunofluorescence, qPCR, and western blotting were used to measure changes in expression of Wnt signaling pathway-related genes and osteogenesis-related molecules after osteogenesis induction. Alizarin red and ALP staining was used to confirm the osteogenic potential of stem cells. Bisulfite-specific PCR (BSP) was used to detect JKAMP methylation degree. RESULTS: Expression of JKAMP and osteogenesis-related molecules (RUNX2 and OPN) in DOP-ASCs was decreased significantly in comparison with CON-ASCs. JKAMP silencing inhibited the Wnt signaling pathway and reduced the osteogenic ability of CON-ASCs. Overexpression of JKAMP in DOP-ASCs rescued the impaired osteogenic capacity caused by DOP. Moreover, JKAMP in DOP-ASCs contained intragenic DNA hypermethylated regions related to the downregulation of JKAMP expression. CONCLUSIONS: Intragenic DNA methylation inhibits the osteogenic ability of DOP-ASCs by suppressing expression of JKAMP and the Wnt signaling pathway. This study shows an epigenetic explanation for the reduced osteogenic ability of DOP-ASCs and provides a potential therapeutic target to prevent and treat osteoporosis.


Subject(s)
Diabetes Mellitus , Osteoporosis , Adipose Tissue/metabolism , Animals , Cell Differentiation , Cells, Cultured , DNA Methylation , Diabetes Mellitus/metabolism , Membrane Proteins/metabolism , Mice , Osteogenesis/genetics , Osteoporosis/genetics , Osteoporosis/metabolism , Stem Cells , Wnt Signaling Pathway
15.
Curr Stem Cell Res Ther ; 16(1): 3-13, 2021.
Article in English | MEDLINE | ID: mdl-32357820

ABSTRACT

Adipose-derived stem cells are adult stem cells which are easy to obtain and multi-potent. Stem-cell therapy has become a promising new treatment for many diseases, and plays an increasingly important role in the field of tissue repair, regeneration and reconstruction. The physicochemical properties of the extracellular microenvironment contribute to the regulation of the fate of stem cells. Nanomaterials have stable particle size, large specific surface area and good biocompatibility, which has led them being recognized as having broad application prospects in the field of biomedicine. In this paper, we review recent developments of nanomaterials in adipose-derived stem cell research. Taken together, the current literature indicates that nanomaterials can regulate the proliferation and differentiation of adipose-derived stem cells. However, the properties and regulatory effects of nanomaterials can vary widely depending on their composition. This review aims to provide a comprehensive guide for future stem-cell research on the use of nanomaterials.


Subject(s)
Adipose Tissue/cytology , Nanostructures/chemistry , Stem Cells/cytology , Animals , Cell Differentiation , Humans , Nanofibers
SELECTION OF CITATIONS
SEARCH DETAIL
...