Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer Ther ; 17(8): 1727-1738, 2018 08.
Article in English | MEDLINE | ID: mdl-29866747

ABSTRACT

Historically, phenotypic-based drug discovery has yielded a high percentage of novel drugs while uncovering new tumor biology. CC-671 was discovered using a phenotypic screen for compounds that preferentially induced apoptosis in triple-negative breast cancer cell lines while sparing luminal breast cancer cell lines. Detailed in vitro kinase profiling shows CC-671 potently and selectively inhibits two kinases-TTK and CLK2. Cellular mechanism of action studies demonstrate that CC-671 potently inhibits the phosphorylation of KNL1 and SRp75, direct TTK and CLK2 substrates, respectively. Furthermore, CC-671 causes mitotic acceleration and modification of pre-mRNA splicing leading to apoptosis, consistent with cellular TTK and CLK inhibition. Correlative analysis of genomic and potency data against a large panel of breast cancer cell lines identifies breast cancer cells with a dysfunctional G1-S checkpoint as more sensitive to CC-671, suggesting synthetic lethality between G1-S checkpoint and TTK/CLK2 inhibition. Furthermore, significant in vivo CC-671 efficacy was demonstrated in two cell line-derived and one patient tumor-derived xenograft models of triple-negative breast cancer (TNBC) following weekly dosing. These findings are the first to demonstrate the unique inhibitory combination activity of a dual TTK/CLK2 inhibitor that preferably kills TNBC cells and shows synthetic lethality with a compromised G1-S checkpoint in breast cancer cell lines. On the basis of these data, CC-671 was moved forward for clinical development as a potent and selective TTK/CLK2 inhibitor in a subset of patients with TNBC. Mol Cancer Ther; 17(8); 1727-38. ©2018 AACR.


Subject(s)
Cell Cycle Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Synthetic Lethal Mutations/drug effects , Animals , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Female , Humans , Mice , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Triple Negative Breast Neoplasms/drug therapy
2.
J Med Chem ; 58(13): 5323-33, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26083478

ABSTRACT

We report here the synthesis and structure-activity relationship (SAR) of a novel series of mammalian target of rapamycin (mTOR) kinase inhibitors. A series of 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were optimized for in vivo efficacy. These efforts resulted in the identification of compounds with excellent mTOR kinase inhibitory potency, with exquisite kinase selectivity over the related lipid kinase PI3K. The improved PK properties of this series allowed for exploration of in vivo efficacy and ultimately the selection of CC-223 for clinical development.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Pyrazines/pharmacology , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/chemical synthesis , Humans , Male , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Pyrazines/chemical synthesis , Rats , Structure-Activity Relationship , Tumor Cells, Cultured
3.
J Med Chem ; 58(14): 5599-608, 2015 Jul 23.
Article in English | MEDLINE | ID: mdl-26102506

ABSTRACT

We report here the synthesis and structure-activity relationship (SAR) of a novel series of triazole containing mammalian target of rapamycin (mTOR) kinase inhibitors. SAR studies examining the potency, selectivity, and PK parameters for a series of triazole containing 4,6- or 1,7-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones resulted in the identification of triazole containing mTOR kinase inhibitors with improved PK properties. Potent compounds from this series were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC-3 cancer cells, in vitro and in vivo. When assessed in efficacy models, analogs exhibited dose-dependent efficacy in tumor xenograft models. This work resulted in the selection of CC-115 for clinical development.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , Pyrazines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Triazoles/chemistry , Triazoles/pharmacology , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Humans , Molecular Docking Simulation , Protein Conformation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Pyrazines/metabolism , Pyrazines/pharmacokinetics , Rats , Signal Transduction/drug effects , Structure-Activity Relationship , TOR Serine-Threonine Kinases/chemistry , TOR Serine-Threonine Kinases/metabolism , Triazoles/metabolism , Triazoles/pharmacokinetics , Xenograft Model Antitumor Assays
4.
Mol Cancer Ther ; 14(6): 1295-305, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25855786

ABSTRACT

mTOR is a serine/threonine kinase that regulates cell growth, metabolism, proliferation, and survival. mTOR complex-1 (mTORC1) and mTOR complex-2 (mTORC2) are critical mediators of the PI3K-AKT pathway, which is frequently mutated in many cancers, leading to hyperactivation of mTOR signaling. Although rapamycin analogues, allosteric inhibitors that target only the mTORC1 complex, have shown some clinical activity, it is hypothesized that mTOR kinase inhibitors, blocking both mTORC1 and mTORC2 signaling, will have expanded therapeutic potential. Here, we describe the preclinical characterization of CC-223. CC-223 is a potent, selective, and orally bioavailable inhibitor of mTOR kinase, demonstrating inhibition of mTORC1 (pS6RP and p4EBP1) and mTORC2 [pAKT(S473)] in cellular systems. Growth inhibitory activity was demonstrated in hematologic and solid tumor cell lines. mTOR kinase inhibition in cells, by CC-223, resulted in more complete inhibition of the mTOR pathway biomarkers and improved antiproliferative activity as compared with rapamycin. Growth inhibitory activity and apoptosis was demonstrated in a panel of hematologic cancer cell lines. Correlative analysis revealed that IRF4 expression level associates with resistance, whereas mTOR pathway activation seems to associate with sensitivity. Treatment with CC-223 afforded in vivo tumor biomarker inhibition in tumor-bearing mice, after a single oral dose. CC-223 exhibited dose-dependent tumor growth inhibition in multiple solid tumor xenografts. Significant inhibition of mTOR pathway markers pS6RP and pAKT in CC-223-treated tumors suggests that the observed antitumor activity of CC-223 was mediated through inhibition of both mTORC1 and mTORC2. CC-223 is currently in phase I clinical trials.


Subject(s)
Neoplasms/drug therapy , Pyrazines/pharmacology , TOR Serine-Threonine Kinases/antagonists & inhibitors , Xenograft Model Antitumor Assays , Animals , Apoptosis/drug effects , Blotting, Western , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , HCT116 Cells , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Mechanistic Target of Rapamycin Complex 2 , Mice, SCID , Molecular Structure , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/metabolism , Neoplasms/blood supply , Neoplasms/metabolism , Neovascularization, Pathologic/prevention & control , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Pyrazines/chemistry , TOR Serine-Threonine Kinases/metabolism , Tumor Burden/drug effects
5.
Bioorg Med Chem Lett ; 23(6): 1588-91, 2013 Mar 15.
Article in English | MEDLINE | ID: mdl-23414803

ABSTRACT

We report here the discovery of a novel series of selective mTOR kinase inhibitors and the identification of CC214-2, a compound with demonstrated anti-tumor activity upon oral dosing in a PC3 prostate cancer xenograft model. A series of 4,6-disubstituted-3,4-dihydropyrazino[2,3-b]pyrazine-2(1H)-ones were discovered through a core modification of our original compound series. Analogs from this series have excellent mTOR potency and maintain selectivity over the related PI3Kα lipid kinase. Compounds such as CC214-2 were found to block both mTORC1(pS6) and mTORC2(pAktS473) signaling in PC3 cancer cells, in vitro and in vivo.


Subject(s)
Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/chemistry , Pyrazines/chemistry , TOR Serine-Threonine Kinases/antagonists & inhibitors , Administration, Oral , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Half-Life , Humans , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Pyrazines/pharmacokinetics , Pyrazines/therapeutic use , Pyrazines/toxicity , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...