Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38826295

ABSTRACT

The oscillator of the cyanobacterial circadian clock relies on the ability of the KaiB protein to switch reversibly between a stable ground-state fold (gsKaiB) and an unstable fold-switched fold (fsKaiB). Rare fold-switching events by KaiB provide a critical delay in the negative feedback loop of this post-translational oscillator. In this study, we experimentally and computationally investigate the temperature dependence of fold switching and its mechanism. We demonstrate that the stability of gsKaiB increases with temperature compared to fsKaiB and that the Q10 value for the gsKaiB → fsKaiB transition is nearly three times smaller than that for the reverse transition. Simulations and native-state hydrogen-deuterium exchange NMR experiments suggest that fold switching can involve both subglobally and near-globally unfolded intermediates. The simulations predict that the transition state for fold switching coincides with isomerization of conserved prolines in the most rapidly exchanging region, and we confirm experimentally that proline isomerization is a rate-limiting step for fold switching. We explore the implications of our results for temperature compensation, a hallmark of circadian clocks, through a kinetic model.

2.
Nat Commun ; 15(1): 1476, 2024 Feb 17.
Article in English | MEDLINE | ID: mdl-38368459

ABSTRACT

Overexpressed pro-survival B-cell lymphoma-2 (BCL-2) family proteins BCL-2 and BCL-XL can render tumor cells malignant. Leukemia drug venetoclax is currently the only approved selective BCL-2 inhibitor. However, its application has led to an emergence of resistant mutations, calling for drugs with an innovative mechanism of action. Herein we present cyclic peptides (CPs) with nanomolar-level binding affinities to BCL-2 or BCL-XL, and further reveal the structural and functional mechanisms of how these CPs target two proteins in a fashion that is remarkably different from traditional small-molecule inhibitors. In addition, these CPs can bind to the venetoclax-resistant clinical BCL-2 mutants with similar affinities as to the wild-type protein. Furthermore, we identify a single-residue discrepancy between BCL-2 D111 and BCL-XL A104 as a molecular "switch" that can differently engage CPs. Our study suggests that CPs may inhibit BCL-2 or BCL-XL by delicately modulating protein-protein interactions, potentially benefiting the development of next-generation therapeutics.


Subject(s)
Antineoplastic Agents , Peptides, Cyclic , Peptides, Cyclic/pharmacology , bcl-X Protein/metabolism , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Sulfonamides/pharmacology , Antineoplastic Agents/pharmacology , Proto-Oncogene Proteins c-bcl-2/genetics , Apoptosis , Cell Line, Tumor
3.
Int J Mol Sci ; 24(3)2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36768981

ABSTRACT

Single-molecule force spectroscopy methods, such as AFM and magnetic tweezers, have proved extremely beneficial in elucidating folding pathways for soluble and membrane proteins. To identify factors that determine the force rupture levels in force-induced membrane protein unfolding, we applied our near-atomic-level Upside molecular dynamics package to study the vertical and lateral pulling of bacteriorhodopsin (bR) and GlpG, respectively. With our algorithm, we were able to selectively alter the magnitudes of individual interaction terms and identify that, for vertical pulling, hydrogen bond strength had the strongest effect, whereas other non-bonded protein and membrane-protein interactions had only moderate influences, except for the extraction of the last helix where the membrane-protein interactions had a stronger influence. The up-down topology of the transmembrane helices caused helices to be pulled out as pairs. The rate-limiting rupture event often was the loss of H-bonds and the ejection of the first helix, which then propagated tension to the second helix, which rapidly exited the bilayer. The pulling of the charged linkers across the membrane had minimal influence, as did changing the bilayer thickness. For the lateral pulling of GlpG, the rate-limiting rupture corresponded to the separation of the helices within the membrane, with the H-bonds generally being broken only afterward. Beyond providing a detailed picture of the rupture events, our study emphasizes that the pulling mode greatly affects the factors that determine the forces needed to unfold a membrane protein.


Subject(s)
Bacteriorhodopsins , Bacteriorhodopsins/chemistry , Molecular Dynamics Simulation , Protein Unfolding , Microscopy, Atomic Force , Protein Denaturation , Protein Folding
4.
J Chem Theory Comput ; 18(3): 2016-2032, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35213808

ABSTRACT

Predicting protein binding is a core problem of computational biophysics. That this objective can be partly achieved with some amount of success using docking algorithms based on rigid protein models is remarkable, although going further requires allowing for protein flexibility. However, accurately capturing the conformational changes upon binding remains an enduring challenge for docking algorithms. Here, we adapt our Upside folding model, where side chains are represented as multi-position beads, to explore how flexibility may impact predictions of protein-protein complexes. Specifically, the Upside model is used to investigate where backbone flexibility helps, which types of interactions are important, and what is the impact of coarse graining. These efforts also shed light on the relative challenges posed by folding and docking. After training the Upside energy function for docking, the model is competitive with the established all-atom methods. However, allowing for backbone flexibility during docking is generally detrimental, as the presence of comparatively minor (3-5 Å) deviations relative to the docked structure has a large negative effect on performance. While this issue appears to be inherent to current forcefield-guided flexible docking methods, systems involving the co-folding of flexible loops such as antibody-antigen complexes represent an interesting exception. In this case, binding is improved when backbone flexibility is allowed using the Upside model.


Subject(s)
Algorithms , Proteins , Protein Binding , Protein Conformation , Proteins/chemistry
5.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34969836

ABSTRACT

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron-electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli's lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Subject(s)
Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Protein Conformation , Biotinylation , Cell Membrane , Cryoelectron Microscopy , DNA-Binding Proteins , Endopeptidases , Escherichia coli , Escherichia coli Proteins/chemistry , Models, Molecular , Protein Denaturation , Protein Folding , Streptavidin
6.
J Chem Theory Comput ; 18(1): 550-561, 2022 Jan 11.
Article in English | MEDLINE | ID: mdl-34936354

ABSTRACT

The denaturant dependence of hydrogen-deuterium exchange (HDX) is a powerful measurement to identify the breaking of individual H-bonds and map the free energy surface (FES) of a protein including the very rare states. Molecular dynamics (MD) can identify each partial unfolding event with atomic-level resolution. Hence, their combination provides a great opportunity to test the accuracy of simulations and to verify the interpretation of HDX data. For this comparison, we use Upside, our new and extremely fast MD package that is capable of folding proteins with an accuracy comparable to that of all-atom methods. The FESs of two naturally occurring and two designed proteins are so generated and compared to our NMR/HDX data. We find that Upside's accuracy is considerably improved upon modifying the energy function using a new machine-learning procedure that trains for proper protein behavior including realistic denatured states in addition to stable native states. The resulting increase in cooperativity is critical for replicating the HDX data and protein stability, indicating that we have properly encoded the underlying physiochemical interactions into an MD package. We did observe some mismatch, however, underscoring the ongoing challenges faced by simulations in calculating accurate FESs. Nevertheless, our ensembles can identify the properties of the fluctuations that lead to HDX, whether they be small-, medium-, or large-scale openings, and can speak to the breadth of the native ensemble that has been a matter of debate.


Subject(s)
Deuterium Exchange Measurement , Hydrogen , Deuterium Exchange Measurement/methods , Entropy , Hydrogen/chemistry , Protein Conformation , Proteins/chemistry
7.
Phys Chem Chem Phys ; 23(3): 2430-2437, 2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33459730

ABSTRACT

Intrinsically disordered proteins (IDPs) are a group of proteins that lack well-defined structures under native conditions and carry out crucial physiological functions in various biochemical pathways. Due to the heterogeneous nature of IDPs, molecular dynamics simulations have been extensively adopted to investigate the conformational ensembles and dynamic properties of these proteins. However, their accuracy remains limited by the development of force fields and sampling algorithms. Here, we evaluated the quality of both force fields and enhanced sampling algorithms based on five short pepX peptides. Our results show that the more extended conformational ensembles sampled by the AMOEBA polarizable force field present a higher ability to reproduce experimental NMR observables than AMBER and CHARMM classical force fields. Moreover, a better agreement with experiments is achieved in the simulation of IaMD (integrated accelerated molecular dynamics) than in aMD (accelerated molecular dynamics). The results together indicate that the combination of AMOEBA force field and IaMD enhanced sampling might be a better choice for simulating IDPs. This work may provide important clues for developments and applications of force fields and enhanced sampling methods in future simulations of IDPs.


Subject(s)
Intrinsically Disordered Proteins/chemistry , Oligopeptides/chemistry , Algorithms , Databases, Chemical , Molecular Dynamics Simulation
8.
Science ; 362(6415)2018 11 09.
Article in English | MEDLINE | ID: mdl-30262633

ABSTRACT

Ribonuclease P (RNase P) is a universal ribozyme responsible for processing the 5'-leader of pre-transfer RNA (pre-tRNA). Here, we report the 3.5-angstrom cryo-electron microscopy structures of Saccharomyces cerevisiae RNase P alone and in complex with pre-tRNAPhe The protein components form a hook-shaped architecture that wraps around the RNA and stabilizes RNase P into a "measuring device" with two fixed anchors that recognize the L-shaped pre-tRNA. A universally conserved uridine nucleobase and phosphate backbone in the catalytic center together with the scissile phosphate and the O3' leaving group of pre-tRNA jointly coordinate two catalytic magnesium ions. Binding of pre-tRNA induces a conformational change in the catalytic center that is required for catalysis. Moreover, simulation analysis suggests a two-metal-ion SN2 reaction pathway of pre-tRNA cleavage. These results not only reveal the architecture of yeast RNase P but also provide a molecular basis of how the 5'-leader of pre-tRNA is processed by eukaryotic RNase P.


Subject(s)
RNA Cleavage , RNA Precursors/chemistry , Ribonuclease P/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Biocatalysis , Catalytic Domain , Cryoelectron Microscopy , Holoenzymes/chemistry , Holoenzymes/ultrastructure , Protein Conformation , Ribonuclease P/ultrastructure , Saccharomyces cerevisiae Proteins/ultrastructure , Substrate Specificity
9.
J Chem Theory Comput ; 14(3): 1216-1227, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29394067

ABSTRACT

Accelerated Molecular Dynamics (aMD) is a promising enhanced sampling method to explore the conformational space of biomolecules. However, the large statistical noise in reweighting limits its accuracy to recover the original free energy profile. In this work, we propose an Integrated accelerated Molecule Dynamics (IaMD) method by integrating a series of aMD subterms with different acceleration parameters to improve the sampling efficiency and maintain the reweighting accuracy simultaneously. We use Alanine Dipeptide and three fast-folded proteins (Chignolin, Trp-cage, and Villin Headpiece) as the test objects to compare our IaMD method with aMD systematically. These case studies indicate that the statistical noise of IaMD in reweighting for free energy profiles is much smaller than that of aMD at the same level of acceleration and simulation time. To achieve the same accuracy as IaMD, aMD requires 1-3 orders of magnitude longer simulation time, depending on the complexity of the simulated system and the level of acceleration. Our method also outperforms aMD in controlling systematic error caused by the disappearance of the low-energy conformations when high acceleration parameters are used in aMD simulations for fast-folded proteins. Furthermore, the performance comparison between IaMD and the Integrated Tempering Sampling (ITS) in the case of Alanine Dipeptide demonstrates that IaMD possesses a better ability to control the potential energy region of sampling.

10.
Molecules ; 23(1)2017 Dec 31.
Article in English | MEDLINE | ID: mdl-29301229

ABSTRACT

In all of the classical force fields, electrostatic interaction is simply treated and explicit electronic polarizability is neglected. The condensed-phase polarization, relative to the gas-phase charge distributions, is commonly accounted for in an average way by increasing the atomic charges, which remain fixed throughout simulations. Based on the lipid polarizable force field DMPC and following the same framework as Atomic Multipole Optimized Energetics for BiomoleculAr (AMOEBA) simulation, the present effort expands the force field to new anionic lipid models, in which the new lipids contain DMPG and POPS. The parameters are compatible with the AMOEBA force field, which includes water, ions, proteins, etc. The charge distribution of each atom is represented by the permanent atomic monopole, dipole and quadrupole moments, which are derived from the ab initio gas phase calculations. Many-body polarization including the inter- and intramolecular polarization is modeled in a consistent manner with distributed atomic polarizabilities. Molecular dynamics simulations of the two aqueous DMPG and POPS membrane bilayer systems, consisting of 72 lipids with water molecules, were then carried out to validate the force field parameters. Membrane width, area per lipid, volume per lipid, deuterium order parameters, electron density profile, electrostatic potential difference between the center of the bilayer and water are all calculated, and compared with limited experimental data.


Subject(s)
Lipids/chemistry , Molecular Dynamics Simulation , Gases/chemistry , Lipid Bilayers/chemistry , Physical Phenomena , Static Electricity , Thermodynamics , Water/chemistry
11.
J Chem Theory Comput ; 12(6): 2973-82, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27171823

ABSTRACT

Classical molecular dynamic (MD) simulation of membrane proteins faces significant challenges in accurately reproducing and predicting experimental observables such as ion conductance and permeability due to its incapability of precisely describing the electronic interactions in heterogeneous systems. In this work, the free energy profiles of K(+) and Na(+) permeating through the gramicidin A channel are characterized by using the AMOEBA polarizable force field with a total sampling time of 1 µs. Our results indicated that by explicitly introducing the multipole terms and polarization into the electrostatic potentials, the permeation free energy barrier of K(+) through the gA channel is considerably reduced compared to the overestimated results obtained from the fixed-charge model. Moreover, the estimated maximum conductance, without any corrections, for both K(+) and Na(+) passing through the gA channel are much closer to the experimental results than any classical MD simulations, demonstrating the power of AMOEBA in investigating the membrane proteins.


Subject(s)
Gramicidin/chemistry , Gramicidin/metabolism , Ions/chemistry , Molecular Dynamics Simulation , Potassium/chemistry , Sodium/chemistry , Static Electricity , Thermodynamics , Water/chemistry
12.
J Comput Chem ; 37(6): 614-22, 2016 Mar 05.
Article in English | MEDLINE | ID: mdl-26493154

ABSTRACT

The free energy calculation library PLUMED has been incorporated into the OpenMM simulation toolkit, with the purpose to perform enhanced sampling MD simulations using the AMOEBA polarizable force field on GPU platform. Two examples, (I) the free energy profile of water pair separation (II) alanine dipeptide dihedral angle free energy surface in explicit solvent, are provided here to demonstrate the accuracy and efficiency of our implementation. The converged free energy profiles could be obtained within an affordable MD simulation time when the AMOEBA polarizable force field is employed. Moreover, the free energy surfaces estimated using the AMOEBA polarizable force field are in agreement with those calculated from experimental data and ab initio methods. Hence, the implementation in this work is reliable and would be utilized to study more complicated biological phenomena in both an accurate and efficient way. © 2015 Wiley Periodicals, Inc.


Subject(s)
Dipeptides/chemistry , Thermodynamics , Models, Chemical , Molecular Dynamics Simulation , Water/chemistry
13.
Chem Sci ; 6(5): 2812-2821, 2015 May 01.
Article in English | MEDLINE | ID: mdl-28706670

ABSTRACT

Cognition and memory impairment are hallmarks of the pathological cascade of various neurodegenerative disorders. Herein, we developed a novel computational strategy with two-dimensional virtual screening for not only affinity but also specificity. We integrated the two-dimensional virtual screening with ligand screening for 3D shape, electrostatic similarity and local binding site similarity to find existing drugs that may reduce the signs of cognitive deficits. For the first time, we found that pazopanib, a tyrosine kinase inhibitor marketed for cancer treatment, inhibits acetylcholinesterase (AchE) activities at sub-micromolar concentration. We evaluated and compared the effects of intragastrically-administered pazopanib with donepezil, a marketed AchE inhibitor, in cognitive and behavioral assays including the novel object recognition test, Y maze and Morris water maze test. Surprisingly, we found that pazopanib can restore memory loss and cognitive dysfunction to a similar extent as donepezil in a dosage of 15 mg kg-1, only one fifth of the equivalent clinical dosage for cancer treatment. Furthermore, we demonstrated that pazopanib dramatically enhances the hippocampal Ach levels and increases the expression of the synaptic marker SYP. These findings suggest that pazopanib may become a viable treatment option for memory and cognitive deficits with a good safety profile in humans.

SELECTION OF CITATIONS
SEARCH DETAIL
...