Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Virol Sin ; 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38914259

ABSTRACT

Next-generation sequencing (NGS) has significantly improved the accuracy and efficiency of pathogen diagnosis for a wide range of diseases. In this study, viral metagenomics analysis was conducted on fecal and tissue samples from a 13-year-old recipient of hematopoietic stem cell transplantation (HSCT) afflicted with severe lingual papillomatosis. The analysis revealed a high abundance of adeno-associated virus 2 (AAV2), alongside potential helper viruses, herpesvirus type 1 (HSV-1), and the uncommon adenovirus serotype 18 (AdV18). Although a direct causal relationship was not definitively established, the concurrence of these viruses indicated a plausible link to the development of severe lingual papillomatosis in immunocompromised individuals. Notably, the study generated a complete genome sequence of AdV18, offering insights into adenovirus genetic variability, origin, and pathogenicity. Noteworthy findings include three amino acid substitutions in the polymerase and one in the hexon, distinguishing them from previously published strains of AdV18. Phylogenetic analysis unveiled a close relationship between both the polymerase and hexon regions of AdV18 in our study and previously reported AdV18 sequences. This study underscores the pivotal role of comprehensive viral scrutiny in elucidating infections among HSCT patients with lingual papillomatosis.

2.
Viruses ; 15(12)2023 11 22.
Article in English | MEDLINE | ID: mdl-38140528

ABSTRACT

Herpes zoster (HZ) is a disease caused by the reactivation of latent varicella-zoster virus (VZV). The subunit vaccine, Shingrix®, and live attenuated vaccine, Zostavax®, could be used as an HZ vaccine that prevents HZ from being developed due to the reactivation of latent VZV in the sensory ganglia due to aging, stress or immunosuppression. In this study, the recombinant adenoviruses rChAd63/gE expressing glycoprotein E (gE) of VZV based on chimpanzee adenovirus serotype 63 (ChAd63) were constructed and investigated for the immunogenicity of different immune pathways in C57BL/6 mice. The results showed similar CD4+ T and CD8+ T cell responses to Shingrix® were induced in mice vaccinated using rChAd63/gE via different immune pathways. This study elucidates that recombinant adenoviruses expressing VZV gE could be appropriate for further development as a new HZ vaccine candidate via different immune pathways.


Subject(s)
Herpes Zoster Vaccine , Herpes Zoster , Animals , Mice , Herpesvirus 3, Human/genetics , Mice, Inbred C57BL , Viral Envelope Proteins/genetics , Recombinant Proteins
3.
Front Microbiol ; 14: 1298026, 2023.
Article in English | MEDLINE | ID: mdl-38111642

ABSTRACT

The COVID-19 pandemic has resulted in the implementation of strict mitigation measures that have impacted the transmission dynamics of human respiratory syncytial virus (HRSV). The measures also have the potential to influence the evolutionary patterns of the virus. In this study, we conducted a comprehensive analysis comparing genomic variations and evolving characteristics of its neutralizing antigens, specifically F and G proteins, before and during the COVID-19 pandemic. Our findings showed that both HRSV A and B exhibited an overall chronological evolutionary pattern. For the sequences obtained during the pandemic period (2019-2022), we observed that the HRSV A distributed in A23 genotype, but formed into three subclusters; whereas the HRSV B sequences were relatively concentrated within genotype B6. Additionally, multiple positively selected sites were detected on F and G proteins but none were located at neutralizing antigenic sites of the F protein. Notably, amino acids within antigenic site III, IV, and V of F protein remained strictly conserved, while some substitutions occurred over time on antigenic site Ø, I, II and VIII; substitution S389P on antigenic site I of HRSV B occurred during the pandemic period with nearly 50% frequency. However, further analysis revealed no substitutions have altered the structural conformations of the antigenic sites, the vial antigenicity has not been changed. We inferred that the intensive public health interventions during the COVID-19 pandemic did not affect the evolutionary mode of HRSV.

4.
Viruses ; 15(2)2023 01 23.
Article in English | MEDLINE | ID: mdl-36851535

ABSTRACT

The Omicron variant is currently ravaging the world, raising serious concern globally. Monitoring genomic variations and determining their influence on biological features are critical for tracing its ongoing transmission and facilitating effective measures. Based on large-scale sequences from different continents, this study found that: (i) The genetic diversity of Omicron is much lower than that of the Delta variant. Still, eight deletions (Del 1-8) and 1 insertion, as well as 130 SNPs, were detected on the Omicron genomes, with two deletions (Del 3 and 4) and 38 SNPs commonly detected on all continents and exhibiting high-occurring frequencies. (ii) Four groups of tightly linked SNPs (linkage I-IV) were detected, among which linkage I, containing 38 SNPs, with 6 located in the RBD, increased its occurring frequency remarkably over time. (iii) The third codons of the Omicron shouldered the most mutation pressures, while the second codons presented the least flexibility. (iv) Four major mutants with amino acid substitutions in the RBD were detected, and further structural analysis suggested that the substitutions did not alter the viral receptor binding ability greatly. It was inferred that though the Omicron genome harbored great changes in antigenicity and remarkable ability to evade immunity, it was immune-pressure selected. This study tracked mutational signatures of Omicron variant and the potential biological significance of the SNPs, and the linkages await further functional verification.


Subject(s)
COVID-19 , Humans , SARS-CoV-2/genetics , Mutation , Amino Acid Substitution
5.
Front Microbiol ; 13: 1041338, 2022.
Article in English | MEDLINE | ID: mdl-36466668

ABSTRACT

Human respiratory syncytial virus (RSV) is a ubiquitous pediatric pathogen causing serious lower respiratory tract disease worldwide. No licensed vaccine is currently available. In this work, the coding gene for mDS-Dav1, the full-length and prefusion conformation RSV fusion glycoprotein (F), was designed by introducing the stabilized prefusion F (preF) mutations from DS-Cav1 into the encoding gene of wild-type RSV (wtRSV) F protein. The recombinant adenovirus encoding mDS-Cav1, rChAd63-mDS-Cav1, was constructed based on serotype 63 chimpanzee adenovirus vector and characterized in vitro. After immunizing mice via intranasal route, the rChAd63-mDS-Cav1 induced enhanced neutralizing antibody and F-specific CD8+ T cell responses as well as good immune protection against RSV challenge with the absence of enhanced RSV disease (ERD) in BALB/c mice. The results indicate that rChAd63-mDS-Cav1 is a promising mucosal vaccine candidate against RSV infection and warrants further development.

6.
Viruses ; 14(10)2022 10 19.
Article in English | MEDLINE | ID: mdl-36298851

ABSTRACT

It has been argued that vaccine-breakthrough infections of SARS-CoV-2 would likely accelerate the emergence of novel variants with immune evasion. This study explored the evolutionary patterns of the Delta variant in countries/regions with relatively high and low vaccine coverage based on large-scale sequences. Our results showed that (i) the sequences were grouped into two clusters (L and R); the R cluster was dominant, its proportion increased over time and was higher in the high-vaccine-coverage areas; (ii) genetic diversities in the countries/regions with low vaccine coverage were higher than those in the ones with high vaccine coverage; (iii) unique mutations and co-mutations were detected in different countries/regions; in particular, common co-mutations were exhibited in highly occurring frequencies in the areas with high vaccine coverage and presented in increasing frequencies over time in the areas with low vaccine coverage; (iv) five sites on the S protein were under strong positive selection in different countries/regions, with three in non-C to U sites (I95T, G142D and T950N), and the occurring frequencies of I95T in high vaccine coverage areas were higher, while G142D and T950N were potentially immune-pressure-selected sites; and (v) mutation at the N6-methyladenosine site 4 on ORF7a (C27527T, P45L) was detected and might be caused by immune pressure. Our study suggested that certain variation differences existed between countries/regions with high and low vaccine coverage, but they were not likely caused by host immune pressure. We inferred that no extra immune pressures on SARS-CoV-2 were generated with high vaccine coverage, and we suggest promoting and strengthening the uptake of the COVID-19 vaccine worldwide, especially in less developed areas.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19 Vaccines/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Mutation , Spike Glycoprotein, Coronavirus/genetics
7.
J Enzyme Inhib Med Chem ; 37(1): 2598-2604, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36131622

ABSTRACT

Human respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract infection worldwide. Until now, there are no licenced vaccines or effective antiviral drugs against RSV infections. In our previous work, we found 2-((1H-indol-3-yl)thio/sulfinyl)-N-pheny acetamide derivatives (4-49 C and 1-HB-63) being a novel inhibitor against RSV in vitro. Here, we explored the underlying mechanism of 2-((1H-indol-3-yl)thio/sulfinyl)-N-pheny acetamide derivatives to inhibit RSV replication in vitro and disclosed that 4-49 C worked as the inhibitor of membrane fusion and 1-HB-63 functioned at the stage of RSV genome replication/transcription. Yet, both of them could not inhibit RSV infection of BALB/c mice by using RSV-Luc, in vivo imaging and RT-qPCR analyses, for which it may be due to the fast metabolism in vivo. Our work suggests that further structural modification and optimisation of 2-((1H-indol-3-yl) thio/sulfinyl)-N-pheny acetamide derivative are needed to obtain drug candidates with effective anti-RSV activities in vivo.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Acetamides/pharmacology , Amides/pharmacology , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus, Human/genetics , Virus Replication
8.
Front Microbiol ; 12: 750725, 2021.
Article in English | MEDLINE | ID: mdl-34691002

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been emerging and circulating globally since the start of the COVID-19 pandemic, of which B.1.617 lineage that was first reported in India at the end of 2020, soon became predominant. Tracing genomic variations and understanding their impact on the viral properties are the foundations for the vaccine and drug development and for the mitigation measures to be taken or lifted. In this study, 1,051 near-complete genomes and 1,559 spike (S) sequences belonging to the B.1.617 were analyzed. A genome-wide spread of single nucleotide polymorphisms (SNPs) was identified. Of the high frequency mutations identified, 61% (11/18) involved structural proteins, despite two third of the viral genome encoding nonstructural proteins. There were 22 positive selection sites, mostly distributed across the S protein, of which 16 were led by non-C to U transition and should be of a special attention. Haplotype network revealed that a large number of daughter haplotypes were continually derived throughout the pandemic, of which H177, H181 H219 and H286 from the ancestor haplotype H176 of B.1.617.2 were widely prevalent. Besides the well known substitutions of L452R, P681R and deletions of E156 and F157, as well as the potential biological significance, structural analysis in this study still indicated that new amino acid changes in B.1.617, such as E484Q and N501Y, had reshaped the viral bonding network, and increasingly sequenced N501Y mutant with a potential enhanced binding ability was detected in many other countries in the follow-up monitoring. Although we can't conclude the properties of all the mutants including N501Y thoroughly, it merits focusing on their spread epidemically and biologically.

9.
Sci Rep ; 11(1): 12941, 2021 06 21.
Article in English | MEDLINE | ID: mdl-34155268

ABSTRACT

Human respiratory syncytial viruses (RSVs) are classified into two major groups (A and B) based on antigenic differences in the G glycoprotein. To investigate circulating characteristics and phylodynamic history of RSV, we analyzed the genetic variability and evolutionary pattern of RSVs from 1977 to 2019 in this study. The results revealed that there was no recombination event of intergroup. Single nucleotide polymorphisms (SNPs) were observed through the genome with the highest occurrence rate in the G gene. Five and six sites in G protein of RSV-A and RSV-B, respectively, were further identified with a strong positive selection. The mean evolutionary rates for RSV-A and -B were estimated to be 1.48 × 10-3 and 1.92 × 10-3 nucleotide substitutions/site/year, respectively. The Bayesian skyline plot showed a constant population size of RSV-A and a sharp expansion of population size of RSV-B since 2005, and an obvious decrease 5 years later, then became stable again. The total population size of RSVs showed a similar tendency to that of RSV-B. Time-scaled phylogeny suggested a temporal specificity of the RSV-genotypes. Monitoring nucleotide changes and analyzing evolution pattern for RSVs could give valuable insights for vaccine and therapy strategies against RSV infection.


Subject(s)
Evolution, Molecular , Genetic Variation , Respiratory Syncytial Virus Infections/virology , Respiratory Syncytial Virus, Human/classification , Respiratory Syncytial Virus, Human/genetics , Bayes Theorem , Genes, Viral , Genotype , Humans , Phylogeny , Polymorphism, Single Nucleotide , RNA, Viral , Recombination, Genetic , Selection, Genetic
10.
J Neurochem ; 158(2): 444-454, 2021 07.
Article in English | MEDLINE | ID: mdl-33694231

ABSTRACT

Extracellular plaque deposits of ß-amyloid peptide (Aß) are one of the main pathological features of Alzheimer's disease (AD). The aggregation of Aß42 species, especially Aß42 oligomers, is still an active research field in AD pathogenesis. Secretory clusterin protein (sCLU), an extracellular chaperone, plays an important role in AD pathogenesis. Although sCLU interacts directly with Aß42 in vitro and in vivo, the mechanism is not clear. In this paper, His-tagged sCLU (sCLU-His) was cloned, expressed and purified, and we applied florescence resonance energy transfer-fluorescence correlation spectroscopy (FRET-FCS) to investigate the direct interaction of sCLU-His and Aß42 at the single-molecule fluorescence level in vitro. Here, we chose four different fluorescently labeled Aß42 oligomers to form two different groups of aggregation models, easy or difficult to aggregate. The results showed that sCLU-His could form complexes with both aggregation models, and sCLU-His inhibited the aggregation of Aß42/RB  ~ Aß42/Atto647 (easy to aggregate model). The complexes were produced as the Aß42/Label adhered to the sCLU-His, which is similar to a "strawberry model," as strawberry seeds are dotted on the outer surface of strawberries. This work provided additional insight into the interaction mechanism of sCLU and Aß42 .


Subject(s)
Amyloid beta-Peptides/antagonists & inhibitors , Clusterin/pharmacology , Peptide Fragments/antagonists & inhibitors , Algorithms , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Cloning, Molecular , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Humans , Models, Chemical , Peptide Fragments/metabolism , Spectrometry, Fluorescence
11.
Virol Sin ; 36(4): 706-720, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33559831

ABSTRACT

Human respiratory syncytial virus (RSV) infection is the leading cause of lower respiratory tract illness (LRTI), and no vaccine against LRTI has proven to be safe and effective in infants. Our study assessed attenuated recombinant RSVs as vaccine candidates to prevent RSV infection in mice. The constructed recombinant plasmids harbored (5' to 3') a T7 promoter, hammerhead ribozyme, RSV Long strain antigenomic cDNA with cold-passaged (cp) mutations or cp combined with temperature-sensitive attenuated mutations from the A2 strain (A2cpts) or further combined with SH gene deletion (A2cptsΔSH), HDV ribozyme (δ), and a T7 terminator. These vectors were subsequently co-transfected with four helper plasmids encoding N, P, L, and M2-1 viral proteins into BHK/T7-9 cells, and the recovered viruses were then passaged in Vero cells. The rescued recombinant RSVs (rRSVs) were named rRSV-Long/A2cp, rRSV-Long/A2cpts, and rRSV-Long/A2cptsΔSH, respectively, and stably passaged in vitro, without reversion to wild type (wt) at sites containing introduced mutations or deletion. Although rRSV-Long/A2cpts and rRSV-Long/A2cptsΔSH displayed  temperature-sensitive (ts) phenotype in vitro and in vivo, all rRSVs were significantly attenuated in vivo. Furthermore, BALB/c mice immunized with rRSVs produced Th1-biased immune response, resisted wtRSV infection, and were free from enhanced respiratory disease. We showed that the combination of ΔSH with attenuation (att) mutations of cpts contributed to improving att phenotype, efficacy, and gene stability of rRSV. By successfully introducing att mutations and SH gene deletion into the RSV Long parent and producing three rRSV strains, we have laid an important foundation for the development of RSV live attenuated vaccines.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Animals , Chlorocebus aethiops , Mice , Mice, Inbred BALB C , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/genetics , Respiratory Syncytial Virus, Human/genetics , Vaccines, Attenuated/genetics , Vero Cells , Virus Replication
12.
BMC Nephrol ; 21(1): 385, 2020 09 05.
Article in English | MEDLINE | ID: mdl-32891117

ABSTRACT

BACKGROUND: Excess cadmium (Cd) intake poses a general risk to health and to the kidneys in particular. Among indices of renal dysfunction under Cd burden measures are the urinary N-acetyl-ß-D-glucosidase (UNAG) and urinary ß2-microglobulin (Uß2-MG) enzymes. However, the end-pointed values and the Cd burden threshold remain controversial because the scopes fluctuate widely. METHODS: To ascertain the clinical benchmark dose of urinary Cd (UCd) burden for renal dysfunction, 1595 residents near a Cd site were surveyed. Urine was sampled and assayed. A benchmark dose low (BMDL) was obtained by fitting UCd levels and index levels. RESULTS: We found that over 50% of the subjects were suffering from Cd exposure as their UCd levels far exceeded the national standard threshold of 5.000 µg/g creatinine (cr). Further analysis indicated that Uß2-MG was more sensitive than UNAG for renal dysfunction. The BMDL for UCd was estimated as 3.486 U/g cr (male, where U is unit of enzyme) and 2.998 U/g cr (female) for UNAG. The BMDL for Uß2-MG, which is released into urine from glomerulus after Cd exposure, was found to be 2.506 µg/g cr (male, where µg is the unit of microglobulin) and 2.236 µg/g cr (female). CONCLUSIONS: Uß2-MG is recommended as the sensitivity index for renal dysfunction, with 2.2 µg/g cr as the threshold for clinical diagnosis. Our findings suggest that Uß2-MG is the better biomarker for exposure to Cd.


Subject(s)
Acetylglucosaminidase/urine , Cadmium/urine , Renal Insufficiency/diagnosis , beta 2-Microglobulin/urine , Aged , Biomarkers/urine , Cadmium/adverse effects , Environmental Exposure/adverse effects , Female , Humans , Male , Middle Aged , Renal Insufficiency/chemically induced , Renal Insufficiency/urine
13.
Evol Bioinform Online ; 16: 1176934320954870, 2020.
Article in English | MEDLINE | ID: mdl-35173405

ABSTRACT

Monitoring the mutation and evolution of the virus is important for tracing its ongoing transmission and facilitating effective vaccine development. A total of 342 complete genomic sequences of SARS-CoV-2 were analyzed in this study. Compared to the reference genome reported in December 2019, 465 mutations were found, among which, 347 occurred in only 1 sequence, while 26 occurred in more than 5 sequences. For these 26 further identified as SNPs, 14 were closely linked and were grouped into 5 profiles. Phylogenetic analysis revealed the sequences formed 2 major groups. Most of the sequences in late period (March and April) constituted the Cluster II, while the sequences before March in this study and the reported S/L and A/B/C types in previous studies were all in Cluster I. The distributions of some mutations were specific geographically or temporally, the potential effect of which on the transmission and pathogenicity of SARS-CoV-2 deserves further evaluation and monitoring. Two mutations were found in the receptor-binding domain (RBD) but outside the receptor-binding motif (RBM), indicating that mutations may only have marginal biological effects but merit further attention. The observed novel sequence divergence is of great significance to the study of the transmission, pathogenicity, and development of an effective vaccine for SARS-CoV-2.

14.
Virology ; 535: 171-178, 2019 09.
Article in English | MEDLINE | ID: mdl-31306912

ABSTRACT

Human respiratory syncytial virus (RSV) is one of the predominant pathogens causing lower respiratory tract infection in infants and young children worldwide, whereas there is so far no vaccine or drug against RSV infection for clinical use. In this work, we developed and validated a fluorescence-based high-throughput screening (HTS) assay to identify compounds active against RSV, using RSV-mGFP, a recombinant RSV encoding enhanced green fluorescent protein (EGFP). Thereafter, among 54,800 compounds used for our screen, we obtained 62 compounds active against RSV. Among these hits, azathioprine (AZA) and 6-mercaptopurine (6-MP) were identified as RSV inhibitors with half maximal inhibitory concentration (IC50) values of 6.69 ±â€¯1.41 and 3.13 ±â€¯0.98 µM, respectively. Further experiments revealed that they functioned by targeting virus transcription or/and genome replication. In conclusion, the established HTS assay is suitable to screen anti-RSV compounds, and the screened two hits of AZA and 6-MP, as potential anti-RSV agents targeting RSV genome replication/transcription, are worthy of further investigation on their anti-RSV activity in vivo.


Subject(s)
Antiviral Agents/pharmacology , Drug Evaluation, Preclinical/methods , High-Throughput Screening Assays/methods , Respiratory Syncytial Virus, Human/drug effects , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , HeLa Cells , Humans , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Staining and Labeling/methods
15.
Biopolymers ; 109(11): e23237, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30311215

ABSTRACT

Fluorescence-based methods are promising for measuring amyloid beta (Aß) oligomers, given their capacity to analyse a sample at the single-molecule level. As the attachment of fluorescent labels may influence the biochemical properties of the Aß oligomers, the effects of fluorescent labels on Aß oligomers must be evaluated. In this paper, we compared the impacts of five different fluorescent dyes on the aggregation of Aß42 oligomers using fluorescence correlation spectroscopy (FCS). We found that fluorescent labels of BODIPY® FL-C5 (BP), N-hydroxysuccinimide rhodamine B ester (RB) and rhodamine B isothiocyanate (RITC) increased the propensity of labelled Aß42 oligomers to aggregate, whereas 6-(fluorescein-5-carboxamido) hexanoic acid succinimidyl ester (5-SFX) and fluorescein 5(6)-isothiocyanate (5(6)-FITC) decreased the propensity of labelled Aß42 oligomers to aggregate. This difference originated from the different electric charges and hydrophobicity of the fluorescent dyes. These results provide valuable information for establishing different aggregation models for Aß42 oligomers in vitro using FCS.


Subject(s)
Amyloid beta-Peptides/metabolism , Fluorescent Dyes/chemistry , Peptide Fragments/metabolism , Amyloid beta-Peptides/chemistry , Boron Compounds/chemistry , Fluorescein-5-isothiocyanate/chemistry , Fluoresceins/chemistry , Kinetics , Microscopy, Confocal/methods , Microscopy, Electron, Transmission , Peptide Fragments/chemistry , Rhodamines/chemistry
16.
Biomed Res Int ; 2018: 8431243, 2018.
Article in English | MEDLINE | ID: mdl-29568767

ABSTRACT

Human respiratory syncytial virus (RSV) is the single most important cause of lower respiratory tract disease in infants and young children and a major viral agent responsible for respiratory tract disease in immunosuppressed individuals and the elderly, but no vaccines and antiviral drugs are available. Herein the recombinant RSV (rRSV) encoding enhanced green fluorescence protein (EGFP, rRSV-EGFP) was constructed and the potential for screening anti-RSV drugs was investigated. The recombinant plasmid of pBRATm-rRSV-EGFP, containing T7 transcription cassette composed of T7 promoter, RSV antigenomic cDNA with EGFP gene, HDV ribozyme (δ), and T7 terminator in the order of 5' to 3', was constructed and cotransfected into BHK/T7-9 cells together with helper plasmids encoding N, P, L, and M2-1 gene, respectively. The rescued rRSV-EGFP was confirmed by increasing expression of EGFP over blind passages and by RT-PCR. rRSV-EGFP was comparable to the other two recombinant RSVs encoding red fluorescent protein (RFP, rRSV-RFP) or luciferase (Luc, rRSV-Luc) in the growth kinetic, and there was a difference in sensitivity between them for screening anti-RSV agents based on infection of HEp-2 cells. The EGFP-encoding rRSV has been constructed and rescued successfully and has the potential for high-throughput anti-RSV drug screening in vitro.


Subject(s)
Antiviral Agents/pharmacology , Green Fluorescent Proteins/genetics , Recombination, Genetic/genetics , Respiratory Syncytial Virus, Human/drug effects , Respiratory Syncytial Virus, Human/genetics , Animals , Cell Line , Chlorocebus aethiops , Cricetinae , Fluorescence , HEK293 Cells , Humans , RNA, Messenger/genetics , Respiratory Syncytial Virus Infections/drug therapy , Vero Cells , Viral Proteins/genetics , Virus Replication/drug effects
17.
Viruses ; 10(1)2018 01 15.
Article in English | MEDLINE | ID: mdl-29342954

ABSTRACT

Human respiratory syncytial virus (RSV) is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C) motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F) glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Oligodeoxyribonucleotides/immunology , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/immunology , Th1 Cells/immunology , Vaccines, DNA/immunology , Viral Fusion Proteins/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Female , Lung/virology , Mice, Inbred BALB C , Oligodeoxyribonucleotides/administration & dosage , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human
18.
J Mol Neurosci ; 64(2): 162-174, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29260451

ABSTRACT

Autophagy is disturbed in Alzheimer's disease (AD) and maintaining normal autophagy homeostasis is a new therapeutic strategy for AD treatment. Amyloid ß-derived diffusible ligands (ADDLs), the most toxic species of which are oligomeric forms of amyloid ß peptide (Aß) that originate from amyloid ß precursor protein (APP) via autophagy; however, whether ADDLs are involved in autophagy-related AD pathogenesis remains unclear. In this study, we primarily defined the specific subsets of ADDLs, A-0, A-12, A-24, and A-48, which were generated from ADDL aggregation mixtures at different time courses of assembly. The secondary structures of ADDL subsets were detected by circular dichroism (CD). Neuronal or non-neuronal cells were exposed to the subsets of ADDLs in vitro, and then, autophagic markers were detected. Our results first showed that exogenous or endogenous LC3 puncta (autophagosomes) were induced in the cytoplasm of cells exposed to ADDLs and that the LC3 puncta were the strongest with A-24 exposure. Then, the CD spectroscopy data also indicated that the proportion of α-helices decreased, whereas the proportion of ß-strands and ß-turns increased during ADDL assembly from 0 to 24 h. In addition, the quantitative Western blot data demonstrated that the ratio of LC3B-II/I was significantly increased, and SQSTM1/p62 decreased over time. Finally, our results indicated that the level of phosphorylated p70 S6 kinase (p-p70 S6 kinase), which is a substrate protein in the MTOR pathway, and the ratio of p-p70 S6 kinase/p70 S6 kinase significantly decreased following A-24 exposure. Taken together, our data suggest that ADDL-induced abnormal autophagy is correlated with Aß aggregation degree and the MTOR pathway, which might contribute to ADDL-induced AD pathogenesis.


Subject(s)
Amyloid beta-Peptides/toxicity , Autophagy , Protein Aggregation, Pathological/metabolism , Amyloid beta-Peptides/chemistry , Amyloid beta-Peptides/metabolism , Animals , Autophagy-Related Proteins/metabolism , Cells, Cultured , HEK293 Cells , Humans , Mice , Mice, Inbred C57BL , PC12 Cells , Rats , Ribosomal Protein S6 Kinases/metabolism , Sequestosome-1 Protein/metabolism , TOR Serine-Threonine Kinases/metabolism
19.
Antiviral Res ; 144: 57-69, 2017 08.
Article in English | MEDLINE | ID: mdl-28529001

ABSTRACT

Human respiratory syncytial virus (RSV) is an important pediatric pathogen causing acute viral respiratory disease in infants and young children. However, no licensed vaccines are currently available. Virus-like particles (VLPs) may bring new hope to producing RSV VLP vaccine with high immunogenicity and safety. Here, we constructed the recombinants of matrix protein (M) and fusion glycoprotein (F) of RSV, respectively into a replication-deficient first-generation adenoviral vector (FGAd), which were used to co-infect Vero cells to assemble RSV VLPs successfully. The resulting VLPs showed similar immunoreactivity and function to RSV virion in vitro. Moreover, Th1 polarized response, and effective mucosal virus-neutralizing antibody and CD8+ T-cell responses were induced by a single intranasal (i.n.) administration of RSV VLPs rather than intramuscular (i.m.) inoculation, although the comparable RSV F-specific serum IgG and long-lasting RSV-specific neutralizing antibody were detected in the mice immunized by both routes. Upon RSV challenge, VLP-immunized mice showed increased viral clearance but decreased signs of enhanced lung pathology and fewer eosinophils compared to mice immunized with formalin-inactivated RSV (FI-RSV). In addition, a single i.n. RSV VLP vaccine has the capability to induce RSV-specific long-lasting neutralizing antibody responses observable up to 15 months. Our results demonstrate that the long-term and memory immune responses in mice against RSV were induced by a single i.n. administration of RSV VLP vaccine, suggesting a successful approach of RSV VLPs as an effective and safe mucosal vaccine against RSV infection, and an applicable and qualified platform of FGAd-infected Vero cells for VLP production.


Subject(s)
Respiratory Syncytial Virus Infections/prevention & control , Respiratory Syncytial Virus Vaccines/administration & dosage , Respiratory Syncytial Virus Vaccines/immunology , Respiratory Syncytial Virus, Human/immunology , Vaccines, Virus-Like Particle/administration & dosage , Vaccines, Virus-Like Particle/immunology , Adenoviridae/genetics , Administration, Intranasal , Animals , Antibodies, Neutralizing/analysis , Antibodies, Viral/analysis , Blood/immunology , CD8-Positive T-Lymphocytes/immunology , Chlorocebus aethiops , Genetic Vectors , Immunity, Mucosal , Immunoglobulin G/blood , Mice , Respiratory Syncytial Virus Vaccines/genetics , Time Factors , Vaccines, Virus-Like Particle/genetics , Vero Cells , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism
20.
Int Immunopharmacol ; 46: 62-69, 2017 May.
Article in English | MEDLINE | ID: mdl-28259002

ABSTRACT

Human respiratory syncytial virus (RSV) is the most important cause of serious lower respiratory tract infection in infants, the elderly, and the immunocompromised population. There is no licensed vaccine against RSV until now. It has been reported that targeting antigen to DEC205, a phagocytosis receptor on dendritic cells (DCs), could induce enhanced CD4+ and CD8+ T cell responses in mice. To develop RSV DNA vaccine and target the encoded antigen protein to DCs, the ectodomain of fusion glycoprotein (sF, amino acids: 23-524) of RSV was fused with anti-DEC205 single-chain Fv fragment (scDEC) and designated scDECF. Following successful expression from the recombinant plasmid of pVAX1/scDECF, the recombinant protein of scDECF was found capable of specifically binding to DEC205 receptor on CHOmDEC205 cells, and facilitating uptake of RSV F by DC2.4 cells in vitro. Furthermore, the higher levels of RSV-specific IgG antibody responses and neutralization antibody titers, as well as RSV F-specific CD8+ T cell responses were induced in mice immunized intramuscularly by pVAX1/scDECF than by the control plasmid of pVAX1/scISOF encoding sF protein fused with isotype matched control single-chain Fv fragment (scISO). Compared with pVAX1/scISOF, both the ratio of IgG2a/IgG1, >1, and the enhanced IFN-γ cytokine were induced in mice following pVAX1/scDECF immunization, which exhibited a Th1 dominant response in pVAX1/scDECF vaccinated mice. Notably, the elevated efficiency of RSV F protein bound by DCs in vivo could also be observed in mice inoculated by pVAX1/scDECF. Collectively, these results demonstrate the enhanced IgG and CD8+ T cell immune responses have been induced successfully by DNA vaccine against RSV by targeting F antigen to DCs via the DEC205 receptor, and this DC-targeting vaccine strategy merits further investigation.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Dendritic Cells/immunology , Respiratory Syncytial Virus Infections/immunology , Respiratory Syncytial Virus, Human/immunology , Viral Vaccines/immunology , Aged , Animals , Antibodies, Viral/blood , Cell Line , Enzyme-Linked Immunospot Assay , Humans , Immunity, Cellular , Immunocompromised Host , Infant , Infant, Newborn , Interferon-gamma/metabolism , Mice , Mice, Inbred BALB C , Single-Chain Antibodies/genetics , Vaccination , Vaccines, DNA , Viral Vaccines/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...