Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 669: 766-774, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38744154

ABSTRACT

Aqueous Zn-ion hybrid supercapacitors (ZHSs) are attracting significant attention as a promising electrochemical energy storage system. However, carbon cathodes of ZHSs exhibit unsatisfactory ion storage performance due to the large size of hydrated Zn-ions (e.g., [Zn(H2O)6]2+), which encumbers compact ion arrangement and rapid ion transport at the carbon-electrolyte interfaces. Herein, a porous carbon material (HMFC) with abundant sub-nanopores is synthesized to optimize the ion storage performance of the carbon cathode in ZHSs, in which the sub-nanopores effectively promote the dehydration of hydrated Zn-ions and thus optimize the ion storage performance of the carbon cathode in ZHSs. A novel strategy is proposed to study the dehydration behaviors of hydrated Zn-ions in carbon cathodes, including quantitatively determining the desolvation activation energy of hydrated Zn-ions and in-situ monitoring active water content at the carbon-electrolyte interface. The sub-nanopores-induced desolvation effect is verified, and its coupling with large specific surface area and hierarchically porous structure endows the HMFC cathode with improved electrochemical performance, including a 53 % capacity increase compared to the carbon cathode counterpart without sub-nanopores, fast charge/discharge ability that can output 46.0 Wh/kg energy within only 4.4 s, and 98.2 % capacity retention over 20,000 charge/discharge cycles. This work provides new insights into the rational design of porous carbon cathode materials toward high-performance ZHSs.

2.
Small ; 20(4): e2305547, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37715088

ABSTRACT

Zn-based electrochemical energy storage (EES) systems are attracting more attention, whereas their large-scale application is restricted by the dendrite and parasitic reaction-caused unstable Zn anodes. Herein, a negatively charged hydrophobic carbon nano-onion (CNO) interfacial layer is proposed to realize ultrastable and high-rate Zn anodes, enabling high-performance Zn-based EES. For the CNO interfacial layer, its hydrophobicity not only blocks active water but also reduces the Zn2+ desolvation barrier, and meanwhile, the negatively-charged CNO nanoparticles adsorb Zn2+ and repel SO4 2- to homogenize Zn2+ flux, accelerate Zn2+ desolvation and suppress the self-corrosion of Zn anodes. Besides, the conductive CNO interfacial layer increases the surface area for the Zn deposition to reduce local current density. Consequently, under the modulation of the CNO interfacial layer, Zn plating/stripping exhibits impressive reversibility with an average Coulombic efficiency of 99.4% over 800 cycles, and Zn anodes present significantly enhanced electrochemical stability and rate performance, whose operation lifetime exceeds 2000 h at 1 mA cm-2 and 350 h even at 10 mA cm-2 . Moreover, high-rate and ultralong-life Zn-ion hybrid supercapacitors are achieved with the CNO interfacial layer-modulated Zn anode and activated CNO cathode. This work provides new thinking in regulating the Zn deposition interface to realize high-performance Zn-based EES.

3.
Adv Mater ; 35(18): e2300019, 2023 May.
Article in English | MEDLINE | ID: mdl-36787635

ABSTRACT

Ultrathin separators are indispensable to high-energy-density zinc-ion batteries (ZIBs), but their easy failure caused by zinc dendrites poses a great challenge. Herein, 23 µm-thick functional ultrathin separators (FUSs), realizing superb electrochemical stability of zinc anodes and outstanding long-term durability of ultrathin separators, are reported. In the FUSs, an ultrathin but mechanically strong nanoporous membrane substrate benefits fast and flux-homogenized Zn2+ transport, while a metal-organic framework (MOF)-derived C/Cu nanocomposite decoration layer provides rich low-barrier zinc nucleation sites, thereby synergistically stabilizing zinc anodes to inhibit zinc dendrites and dendrite-caused separator failure. Investigation of the zinc affinity of the MOF-derived C/Cu nanocomposites unravels the high zincophilicity of heteroatom-containing C/Cu interfaces. Zinc anodes coupled with the FUSs present superior electrochemical stability, whose operation lifetime exceeds 2000 h at 1 mA cm-2 and 600 h at 10 mA cm-2 , 40-50 times longer than that of the zinc anodes using glass-fiber separators. The reliability of the FUSs in ZIBs and zinc-ion hybrid supercapacitors is also validated. This work proposes a new strategy to stabilize zinc anodes and provides theoretical guidance in developing ultrathin separators for high-energy-density zinc-based energy storage.

4.
Pest Manag Sci ; 78(10): 4261-4267, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35716064

ABSTRACT

BACKGROUND: ω-hexatoxin-Hvn1b is an insecticidal toxin produced by the Tasmanian funnel-web spider (Hadronyche venenata), that can be exploited for development of novel bioinsecticides. Due to its larger size and low membrane permeability, this toxin usually has a slower mode of action compared to conventional small molecule insecticides. Nanoscale materials have unique optical, electrical, mechanical and biological properties, and show great application prospects for pesticide delivery. RESULTS: The physical and chemical properties of nanocapsules were characterized using transmission electron microscopy, laser particle size analysis, Fourier transform infrared spectroscopy, contact angle testing and with a fluorescence spectrophotometer. The results indicated that the nanocapsules were spherical, with an average particle size of 197.70 nm, the encapsulation efficiency rate was 75.82% and the Zeta potential was -32.90 mV. Penetration experiments showed that the nanocapsules could promote protein passage through the intestinal tract of Spodoptera litura and reach the body fluid. Then we expressed ω-hexatoxin-Hvn1b by prokaryotic expression. Bioassay results showed that the oral toxicity of ω-hexatoxin-Hvn1b nanocapsules to S. litura was higher than that of the ω-hexatoxin-Hvn1b. CONCLUSION: In this paper, we reported a construction method of spider venom peptide nanocapsules based on polylactic-co-glycolic acid by multiple emulsion for delivery of protein to improve the insecticidal effect and oral activity of ω-hexatoxin-Hv1a. © 2022 Society of Chemical Industry.


Subject(s)
Insecticides , Nanocapsules , Spider Venoms , Insecticides/toxicity , Peptides , Spider Venoms/chemistry
5.
Front Pharmacol ; 13: 788810, 2022.
Article in English | MEDLINE | ID: mdl-35401186

ABSTRACT

Previous studies have shown that Poria cocos-based formulas combined with chemotherapy can improve the quality of life of ovarian cancer patients. However, the results are still controversial. We systematically searched the literature from eight databases to evaluate the efficacy and safety of Poria cocos-based formulas in combination with paclitaxel-carboplatin in treating ovarian cancer (OC). Subsequently, network pharmacology, molecular docking and cell experiments were performed to further verify the underlying molecular mechanism. Thirteen randomized controlled trials, including 922 patients with OC, were enrolled in the study. The results indicated that Poria cocos-based compounds combined with paclitaxel-carboplatin significantly improved patients' tumor response rate, traditional Chinese medicine syndrome score, Karnofsky Performance Scale, physical and social function, and reduced side effects of chemotherapy compared to the paclitaxel-carboplatin alone. According to the network pharmacological analysis, tumulosic acid were the most bioactive compounds of Poria cocos. BCL2L1 is highly expressed in OC and is associated with a worse prognosis which could become potential drug target. Functional enrichment analysis suggested that the anti-OC effect of Poria cocos may be related to PI3K-Akt signaling pathway. The molecular docking results indicated that tumulosic acid might inhibit OC by regulating BCL2L1. Vitro experiment confirmed tumulosic acid that induced cell apoptosis by modulating PI3K/AKT signaling and BCL2L1. Our study may provide a clinical basis and theoretical rationale for combining Poria cocos-based formulas with chemotherapy for OC. In addition, the integrated pharmacological strategy proposed in our study provides an excellent example for exploring the mechanism of complex formulas.

7.
NanoImpact ; 22: 100304, 2021 04.
Article in English | MEDLINE | ID: mdl-35559982

ABSTRACT

The CD@Fe3O4 photocatalysts were synthesized via hydrothermal synthesis method. The CD@Fe3O4 particles were synthesized using Fe3O4 as the core and using citric acid and ethylenediamine as a raw material, which were heated to 200 °C for 4 h. The synthesized fluorescent CD@Fe3O4 was characterized by HR-TEM, IR and fluorescence spectrophotometer. The HR-TEM results showed CD and Fe3O4 nanoparticles were uniform, mono-dispersed sphere or hemisphere particles with an average size of approximately 3 nm, and particle size of CD@Fe3O4 were mainly in range of 20-30 nm. XRD results showed the nanoparticles mainly belonged to Fe3O4 and CD@Fe3O4, which made recycling our photocatalysts possible due to the magnetic performance. On daylight lamp, the half-life of hexaconazole in CD@Fe3O4 photocatalysts was about 4 days, and it is lower than half-life (over 100 days) of hexaconazole without CD@Fe3O4 photocatalysts.


Subject(s)
Carbon , Coloring Agents , Catalysis , Triazoles
8.
Front Oncol ; 10: 598048, 2020.
Article in English | MEDLINE | ID: mdl-33194764

ABSTRACT

BACKGROUND AND AIMS: In recent years, the best treatment method for pancreatic cancer in elderly patients has remained controversial. Surgery is the main treatment modality for pancreatic cancer. This study aimed to determine whether elderly patients with pancreatic cancer can gain survival advantages through more active and radical surgical treatment and evaluate the best treatment method and potential prognostic factors. METHODS: From the Surveillance, Epidemiology, and End Results program (SEER) database, 10,557 elderly patients (aged ≥65 years) with pancreatic cancer were included as Cohort 1, and Propensity Score Matching (PSM) evaluation was performed to generate Cohort 2 (424 pairs). Overall Survival (OS) and Cause-Specific Survival (CSS) were determined using Kaplan-Meier survival curves, and differences were assessed using the Log-rank test. Multivariate logistic regression analysis and the forest plot of hazard ratio (HR) was made to assess the association between potential prognostic factors, including surgery and different surgical methods, and survival in elderly patients. RESULTS: We identified 10,557 eligible patients with pancreatic cancer, who formed Cohort 1. The total OS and CSS in the surgery group were significantly higher than those in the non-surgery group (P < 0.001). Age, stage (AJCC 8th), grade, lymph node metastasis, radiation, chemotherapy, and surgical methods were independent factors affecting the prognosis of elderly patients. In Cohort 2, Total pancreatectomy (Total PT) had the lowest risk ratio (HR = 0.31, P < 0.001) and longest median CSS (18.000 months), while Extension Total pancreatectomy (Ex-Total PT, HR = 0.34, P < 0.001) showed the lower median CSS (17.000 months) and median OS (14.000 months). Partial pancreatectomy (Partial PT, HR = 0.46, P < 0.001) showed the lowest median CSS (13.000 months) and median OS (12.000 months), although they were still higher than the median CSS (6.000 months) and median OS (5.000 months) in the non-surgery group. CONCLUSIONS: Based on the SEER database, surgical treatment is an independent prognostic factor in elderly patients with pancreatic cancer. Compared with other surgical methods, Total PT can offer elderly patients the best survival advantages. However, Ex-Total PT, a more radical method, does not seem to be the best treatment option for the survival and benefit of elderly patients.

9.
RSC Adv ; 10(8): 4598-4606, 2020 Jan 24.
Article in English | MEDLINE | ID: mdl-35495255

ABSTRACT

In this work, prochloraz pH-responsive nanocapsules were developed by the Pickering emulsion polymerization method with isophorone diisocyanate (IPDI) as the reaction monomer and nano Fe3O4 particle-branched polyethyleneimine (PEI) as the reaction monomer and surfactant. The physical and chemical properties and sustained release properties were determined by a transmission electron microscope (TEM), field emission transmission electron microscope (FETEM), atomic force microscope (AFM), laser particle size analyzer, Fourier transform infrared spectrometer, and contact angle tester. The results indicated that the prochloraz nanocapsules were spherical, the average particle size was about 100 nm, and the encapsulation efficiency and loading rates were 86% and 30%, respectively. The nanocapsules tended to expand in acidic solutions, and this promoted the release of prochloraz more quickly, which could be verified by the biological test of anthrax. At the same time, the prochloraz nanocapsules can protect the pesticide from sunlight. Therefore, this work provides a promising approach to improve the utilization efficiency and prolong the duration of pesticides, which might have a huge potential application prospect.

10.
Pest Manag Sci ; 75(5): 1354-1360, 2019 May.
Article in English | MEDLINE | ID: mdl-30370992

ABSTRACT

BACKGROUND: In this study, 5% cyflumetofen nanocapsules were prepared by interfacial polymerization with isophorone diisocyanate and polyethylene glycol as the reaction monomer, and tristyrylphenol polyoxyethylene ether (601-P) as the emulsifier. The physical, chemical and sustained release properties of cyflumetofen nanocapsules were characterized using scanning electron microscopy, field emission scanning electron microscopy, laser particle size analysis, Fourier transform infrared spectroscopy, contact angles testing and high-performance liquid chromatography. RESULTS: The results indicated that cyflumetofen nanocapsules were spherical, with an average particle size of 100 nm, and an encapsulation efficiency and loading rate of 86% and 32%, respectively. The thermal and cold storage stabilities of cyflumetofen nanocapsules were good. Under high temperature, lower pH or a high core-wall ratio, nanoparticle release is faster. The field efficacy experiment indicated that the efficacy of cyflumetofen nanocapsules against Panonychus citri reached 97%, 30 days after spraying, significantly greater than that of a 20% cyflumetofen suspension. CONCLUSION: It is important to increase the stability, lengthen the release period and improve the efficacy of cyflumetofen in cyflumetofen nanocapsules. © 2018 Society of Chemical Industry.


Subject(s)
Nanocapsules/chemistry , Propionates/chemistry , Animals , Delayed-Action Preparations , Drug Stability , Drug Storage , Hydrogen-Ion Concentration , Kinetics , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...