Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
ACS Appl Mater Interfaces ; 16(19): 24649-24659, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38711294

ABSTRACT

Coupling renewable electricity to reduce carbon dioxide (CO2) electrochemically into carbon feedstocks offers a promising pathway to produce chemical fuels sustainably. While there has been success in developing materials and theory for CO2 reduction, the widespread deployment of CO2 electrolyzers has been hindered by challenges in the reactor design and operational stability due to CO2 crossover and (bi)carbonate salt precipitation. Herein, we design asymmetrical bipolar membranes assembled into a zero-gap CO2 electrolyzer fed with pure water, solving both challenges. By investigating and optimizing the anion-exchange-layer thickness, cathode differential pressure, and cell temperature, the forward-bias bipolar membrane CO2 electrolyzer achieves a CO faradic efficiency over 80% with a partial current density over 200 mA cm-2 at less than 3.0 V with negligible CO2 crossover. In addition, this electrolyzer achieves 0.61 and 2.1 mV h-1 decay rates at 150 and 300 mA cm-2 for 200 and 100 h, respectively. Postmortem analysis indicates that the deterioration of catalyst/polymer-electrolyte interfaces resulted from catalyst structural change, and ionomer degradation at reductive potential shows the decay mechanism. All these results point to the future research direction and show a promising pathway to deploy CO2 electrolyzers at scale for industrial applications.

2.
Sci Total Environ ; 928: 172361, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614339

ABSTRACT

The development of advanced biosensors for tracking chemical residues and detecting environmental pollution is of great significance. Insect chemical sensory proteins, including chemosensory proteins (CSPs), are easy to synthesize and purify and have been used to design proteins for specific biosensor applications. Chlorpyrifos is one of the most commonly used chemicals for controlling insect pests in agriculture. This organophosphate is harmful to aquatic species and has long-term negative consequences for the ecosystem. CSPs can bind and carry a variety of environmental chemicals, including insecticides. However, the mechanism by which CSPs bind to insecticides in aphids has not been clarified. In this study, we discovered that RpCSP1 from Rhopalosiphum padi has a higher affinity for chlorpyrifos, with a Ki value of 4.763 ± 0.491 µM. Multispectral analysis revealed the physicochemical binding mechanism between RpCSP1 and chlorpyrifos. Computational simulation analysis demonstrated that the main factor promoting the development of the RpCSP1-chlorpyrifos complex is polar solvation energy. Four residues (Arg33, Glu94, Gln145, Lys153) were essential in facilitating the interaction between RpCSP1 and chlorpyrifos. Our research has improved knowledge of the relationship between CSPs and organophosphorus pesticides. This knowledge contributes to the advancement of biosensor chips for tracking chemical residues and detecting environmental pollution through the use of CSPs.


Subject(s)
Chlorpyrifos , Insect Proteins , Insecticides , Chlorpyrifos/metabolism , Chlorpyrifos/analysis , Animals , Insecticides/metabolism , Insect Proteins/metabolism , Aphids , Environmental Monitoring/methods , Receptors, Odorant/metabolism , Biosensing Techniques , Pesticide Residues/analysis
3.
Pestic Biochem Physiol ; 201: 105894, 2024 May.
Article in English | MEDLINE | ID: mdl-38685221

ABSTRACT

Rhopalosiphum padi is a global pest that poses a significant threat to wheat crops and has developed resistance to various insecticides. G protein-coupled receptors (GPCRs), known for their crucial role in signaling and biological processes across insect species, have recently gained attention as a potential target for insecticides. GPCR has the potential to contribute to insect resistance through the regulation of P450 gene expression. However, GPCRs in R. padi remained unexplored until this study. We identified a total of 102 GPCRs in R. padi, including 81 receptors from family A, 10 receptors from family B, 8 receptors from family C, and 3 receptors from family D. Among these GPCR genes, 16 were up-regulated in both lambda-cyhalothrin and bifenthrin-resistant strains of R. padi (LC-R and BIF-R). A relaxin receptor gene, RpGPCR41, showed the highest up-regulated expression in both the resistant strains, with a significant increase of 14.3-fold and 22.7-fold compared to the susceptible strain (SS). RNA interference (RNAi) experiments targeting the relaxin receptor significantly increase the mortality of R. padi when exposed to the LC50 concentration of lambda-cyhalothrin and bifenthrin. The expression levels of five P450 genes (RpCYP6CY8, RpCYP6DC1, RpCYP380B1, RpCYP4CH2, and RpCYP4C1) were significantly down-regulated following knockdown of RpGPCR41 in LC-R and BIF-R strains. Our results highlight the involvement of GPCR gene overexpression in the resistance of R. padi to pyrethroids, providing valuable insights into the mechanisms underlying aphid resistance and a potential target for aphid control.


Subject(s)
Aphids , Insecticide Resistance , Insecticides , Pyrethrins , Receptors, G-Protein-Coupled , Animals , Aphids/drug effects , Aphids/genetics , Insect Proteins/genetics , Insect Proteins/metabolism , Insecticide Resistance/genetics , Insecticides/pharmacology , Insecticides/toxicity , Nitriles/pharmacology , Nitriles/toxicity , Pyrethrins/pharmacology , Pyrethrins/toxicity , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , RNA Interference
4.
Pestic Biochem Physiol ; 201: 105902, 2024 May.
Article in English | MEDLINE | ID: mdl-38685224

ABSTRACT

CRF-like diuretic hormone receptor (CRF/DHR), also known as DH44R in insects, are G-protein coupled receptors (GPCRs) that play a role in regulating osmotic balance in various insect species. These receptors have the potential to be targeted for the development of insecticides. However, our understanding of the role of DHR genes in aphids, including Rhopalosiphum padi, a major wheat pest, is currently limited. In this study, we isolated and characterized two R. padi DHRs (RpDHR1 and RpDHR2). The expression levels of RpDHR1 increased after starvation and were restored after re-feeding. The expression levels of RpDHR1 gene decreased significantly 24 h after injection of dsRNA targeting the gene. Knockdown of RpDHR1 increased aphid mortality under starvation conditions (24, 36, 48 and 60 h). Under starvation and desiccation condition, the aphid mortality decreased after knockdown of RpDHR1. This is the first study to report the role of DHR genes in the starvation and desiccation response of aphids. The results suggest that RpDHR1 is involved in the resistance of R. padi to starvation and dehydration, making it a potential target for insecticide development. Novel insecticides could be created by utilizing DHR agonists to disrupt the physiological processes of insect pests.


Subject(s)
Aphids , Insect Proteins , Animals , Aphids/genetics , Aphids/physiology , Insect Proteins/genetics , Insect Proteins/metabolism , Starvation/genetics , Desiccation , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Phylogeny
5.
J Agric Food Chem ; 72(10): 5165-5175, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437009

ABSTRACT

Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.


Subject(s)
Aphids , Insecticides , Nitriles , Pyrethrins , Animals , Molecular Docking Simulation
6.
Bull Entomol Res ; 114(1): 49-56, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38180110

ABSTRACT

Aphis spiraecola Patch is one of the most economically important tree fruit pests worldwide. The pyrethroid insecticide lambda-cyhalothrin is commonly used to control A. spiraecola. In this 2-year study, we quantified the resistance level of A. spiraecola to lambda-cyhalothrin in different regions of the Shaanxi province, China. The results showed that A. spiraecola had reached extremely high resistance levels with a 174-fold resistance ratio (RR) found in the Xunyi region. In addition, we compared the enzymatic activity and expression level of P450 genes among eight A. spiraecola populations. The P450 activity of A. spiraecola was significantly increased in five regions (Xunyi, Liquan, Fengxiang, Luochuan, and Xinping) compared to susceptible strain (SS). The expression levels of CYP6CY7, CYP6CY14, CYP6CY22, P4504C1-like, P4506a13, CYP4CZ1, CYP380C47, and CYP4CJ2 genes were significantly increased under lambda-cyhalothrin treatment and in the resistant field populations. A L1014F mutation in the sodium channel gene was found and the mutation rate was positively correlated with the LC50 of lambda-cyhalothrin. In conclusion, the levels of lambda-cyhalothrin resistance of A. spiraecola field populations were associated with P450s and L1014F mutations. Our combined findings provide evidence on the resistance mechanism of A. spiraecola to lambda-cyhalothrin and give a theoretical basis for rational and effective control of this pest species.


Subject(s)
Aphids , Insecticides , Pyrethrins , Voltage-Gated Sodium Channels , Animals , Aphids/genetics , Pyrethrins/pharmacology , Nitriles/pharmacology , Mutation , Voltage-Gated Sodium Channels/genetics , Gene Expression , Insecticides/pharmacology , Insecticide Resistance/genetics
7.
Insect Sci ; 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38282241

ABSTRACT

Many aphid species exhibit both cyclical parthenogenesis (CP) and the obligate parthenogenesis (OP) life history, which are genetically determined. In CP aphid lineages, the parthenogenetic individuals can switch from asexual to sexual reproduction quickly in response to environmental factors such as changes in photoperiod and temperature. However, the OP aphid lineages do not undergo sexual reproduction under any conditions. So far, mechanisms underlying the reproduction switch in CP aphids have not been fully elucidated. Rhopalosiphum padi, a serious worldwide insect pest of wheat, has both CP and OP lineages. Uridine diphosphate-glycosyltransferases (UGTs) are enzymes that participate in the metabolic detoxification of xenobiotics. Here, we identified 43 RpUGT genes from R. padi genome and transcriptome sequences, and found that: (1) the UGT content of the CP lineage was significantly higher than that in the OP lineage at the key time points when CP lineage mainly produce virginoparae, gynoparae, and males under inducing condition, while there were no significant difference under normal conditions; (2) RpUGT344J7 gene was highly expressed during the time points when CP lineages produce gynopara and males; (3) the critical time points for CP lineages to produce virginoparaee, gynoparae, and males were affected when the CP lineages were injected with dsRpUGT344J7; (4) the knockdown of RpUGT344J7 caused a significant reduction in the total number of virginoparae, gynoparae, and males in the offspring under inducing condition. The findings contribute to our understanding of the molecular mechanisms underlying the quick shift from asexual to sexual reproduction in aphid species.

8.
ChemSusChem ; 17(4): e202301227, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-37833827

ABSTRACT

Hydrothermal humification technology for the preparation of artificial humic matters provides a new strategy, greatly promoting the natural maturation process. Iron, as a common metal, is widely used in the conversion of waste biomass; however, the influence of Fe3+ on hydrothermal humification remains unknown. In this study, FeCl3 is used to catalyze the hydrothermal humification of corn straw, and the influence of Fe3+ on the hydrothermal humification is explored by a series of characterization techniques. Results show that Fe3+ as the catalyst can promote the decomposition of corn straw, shorten the reaction time from 24 h to 6 h, and increase the yield from 6.77 % to 14.08 %. However, artificial humic acid (A-HA) obtained from Fe3+ -catalysis hydrothermal humification contains more unstable carbon and low amount of aromatics, resulting in a significantly decreased stability of the artificial humic acid. These results provide theoretical guidance for regulating the structure and properties of artificial humic acid to meet various maintenance needs.

9.
ACS Nano ; 17(24): 24972-24987, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38093174

ABSTRACT

Tumor metastasis is an intricate multistep process regulated via various proteins and enzymes modified and secreted by swollen Golgi apparatus in tumor cells. Thus, Golgi complex is considered as an important target for the remedy of metastasis. Currently, Golgi targeting technologies are mostly employed in Golgi-specific fluorescent probes for diagnosis, but their applications in therapy are rarely reported. Herein, we proposed a prodrug (INR) that can target and destroy the Golgi apparatus, which consisted of indomethacin (IMC) as the Golgi targeting moiety and retinoic acid (RA), a Golgi disrupting agent. The linker between IMC and RA was designed as a hypoxia-responsive nitroaromatic structure, which ensured the release of the prototype drugs in the hypoxic tumor microenvironment. Furthermore, INR could be assembled with pirarubicin (THP), an anthracycline, to form a carrier-free nanoparticle (NP) by emulsion-solvent evaporation method. A small amount of mPEG2000-DSPE was added to shield the positive charges and improve the stability of the nanoparticle to obtain PEG-modified nanoparticle (PNP). It was proved that INR released the prototype drugs in tumor cells and hypoxia promoted the release. The Golgi destructive effect of RA in INR was amplified owing to the Golgi targeting ability of IMC, and IMC also inhibited the protumor COX-2/PGE2 signaling. Finally, PNP exhibited excellent curative efficacy on 4T1 primary tumor and its pulmonary and hepatic metastasis. The small molecular therapeutic prodrug targeting Golgi apparatus could be adapted to multifarious drug delivery systems and disease models, which expanded the application of Golgi targeting tactics in disease treatment.


Subject(s)
Nanoparticles , Prodrugs , Humans , Prodrugs/chemistry , Anthracyclines/metabolism , Anthracyclines/pharmacology , Drug Delivery Systems , Antibiotics, Antineoplastic/pharmacology , Nanoparticles/chemistry , Hypoxia/drug therapy , Golgi Apparatus , Cell Line, Tumor
10.
ACS Energy Lett ; 8(12): 5275-5280, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38094750

ABSTRACT

Developing efficient and low-cost water electrolyzers for clean hydrogen production to reduce the carbon footprint of traditional hard-to-decarbonize sectors is a grand challenge toward tackling climate change. Bipolar-based water electrolysis combines the benefits of kinetically more favorable half-reactions and relatively inexpensive cell components compared to incumbent technologies, yet it has been shown to have limited performance. Here, we develop and test a bipolar-interface water electrolyzer (BPIWE) by combining an alkaline anode porous transport electrode with an acidic catalyst-coated membrane. The role of TiO2 as a water dissociation (WD) catalyst is investigated at three representative loadings, which indicates the importance of balancing ionic conductivity and WD activity derived from the electric field for optimal TiO2 loading. The optimized BPIWE exhibits negligible performance degradation up to 500 h at 400 mA cm-2 fed with pure water using earth-abundant anode materials. Our experimental findings provide insights into designing bipolar-based electrochemical devices.

11.
Heliyon ; 9(12): e23300, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38149187

ABSTRACT

Background: Mitochondrial myopathy is a group of diseases caused by abnormal mitochondrial structure or function. The mitochondrial myopathy impacts muscles of the whole body and exhibits variable symptoms. Respiratory muscle deficits deteriorate pulmonary function in patients with severe pneumonia. Case presentation: We report the case of a male patient with severe pneumonia-induced respiratory failure. He was abnormally dependent invasive ventilator-assisted ventilation after his condition had improved. Then we found abnormal ventilator waveform and a decline in muscle strength of him. Mitochondrial myopathy was ultimately confirmed by muscle pathological biopsy and body fluid genetic testing. Vitamin B complex, coenzyme Q10, Neprinol AFD, l-arginine, and MITO-TONIC were used to improve mitochondrial function and muscle metabolism. After treatment, discomfort associated with chest tightness, fatigue, cough, and sputum disappeared, and the patient was discharged. Conclusion: This case presented an uncommon cause of difficult weaning and extubation-acute onset of mitochondrial myopathy. Muscle biopsy and genetic testing of body fluid are essential for diagnosing mitochondrial myopathy. The A3243G mutation in the MT-TL1 gene of mitochondrial DNA contributes to pathogenesis of this case.

12.
J Agric Food Chem ; 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37922215

ABSTRACT

Lambda-cyhalothrin is one of the most important pyrethroids used for controlling wheat aphids. Extensive spraying of lambda-cyhalothrin has led to the development of high resistance to this pyrethroid inRhopalosiphum padi. The mechanisms of resistance are complex and not fully understood. In this study, we found that a laboratory-selected strain of R. padi showed extremely high resistance to lambda-cyhalothrin and cross-resistance to bifenthrin and deltamethrin. The expression level of RpCSP7 was significantly elevated in the resistant strain compared to that in the susceptible strain. Knockdown of RpCSP7 increased the susceptibility of R. padi to lambda-cyhalothrin, whereas the susceptibility to bifenthrin and deltamethrin was not significantly changed. The recombinant RpCSP7 displayed a high affinity for lambda-cyhalothrin but no affinities to bifenthrin and deltamethrin. These findings suggest that the overexpression of RpCSP7 contributes to the resistance of R. padi to lambda-cyhalothrin. This study provides valuable insights into CSP-mediated insecticide resistance in insects.

13.
Molecules ; 28(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37894624

ABSTRACT

Ampelopsis grossedentata (AG) is mainly distributed in Chinese provinces and areas south of the Yangtze River Basin. It is mostly concentrated or scattered in mountainous bushes or woods with high humidity. Approximately 57 chemical components of AG have been identified, including flavonoids, phenols, steroids and terpenoids, volatile components, and other chemical components. In vitro studies have shown that the flavone of AG has therapeutic properties such as anti-bacteria, anti-inflammation, anti-oxidation, enhancing immunity, regulating glucose and lipid metabolism, being hepatoprotective, and being anti-tumor with no toxicity. Through searching and combing the related literature, this paper comprehensively and systematically summarizes the research progress of AG, including morphology, traditional and modern uses, chemical composition and structure, and pharmacological and toxicological effects, with a view to providing references for AG-related research.


Subject(s)
Ampelopsis , Drugs, Chinese Herbal , Plants, Medicinal , Ampelopsis/chemistry , Drugs, Chinese Herbal/chemistry , Flavonoids/pharmacology , Flavonoids/chemistry , Glucose , Phytochemicals/pharmacology , Ethnopharmacology , Plant Extracts/chemistry
14.
Bioresour Technol ; 388: 129762, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37716571

ABSTRACT

Efficient removal of organic arsenic (roxarsone, ROX) from wastewater is highly demanded on the purpose of human health and environmental protection. This work aims to prepare Fe-N co-doped biochar (Fe-N-BC) via one-pot hydrothermal method using waste peanut shell, FeCl3·6H2O and urea, followed by pyrolysis. The effect of Fe-N co-doping on biochar's physicochemical properties, and adsorption performance for ROX were systematically investigated. At the pyrolysis temperature of 650 °C, Fe-N-BC-650 shows a significantly increased specific surface area of 358.53 m2/g with well-developed micro-mesoporous structure. Its adsorption capacity for ROX reaches as high as 197.32 mg/g at 25 °C, with > 90 % regeneration efficiency after multiple adsorption-desorption cycles. Correlation and spectral analysis revealed that the pore filling, π-π interactions, as well as hydrogen bonding play the dominant role in ROX adsorption. These results suggest that the Fe-N co-doped biochar shows great potential in the ROX removal from wastewater with high efficiency.

15.
J Poult Sci ; 60: 2023023, 2023.
Article in English | MEDLINE | ID: mdl-37691877

ABSTRACT

The plant species Gelsemium elegans Benth. (GEB) promotes pig and sheep growth; however, little is known about its effects in chickens. In this study, a GEB extract (GEBE) was prepared, and its effects on the growth, slaughter, antioxidant performance, meat quality, serum biochemical indices, intestinal morphology, and microflora of yellow-feathered chickens were evaluated. In total, 600 chickens aged 15 days were randomly divided into four groups with five replicates each and fed a basal diet containing 0% (control), 0.25% (0.25 GEBE), 0.75% (0.75 GEBE), or 1.25% (1.25 GEBE) GEBE until 49 days of age. Chickens were then killed, and their meat, organs, and serum and cecal contents were collected. GEBE reduced the feed conversion ratio, particularly in the 0.75 and 1.25 GEBE groups. Furthermore, the GEBE diet improved meat tenderness and reduced the meat expressible moisture content and liver malondialdehyde content, indicating high meat quality. Whereas the 0.25 GEBE diet increased the level of Lactobacillus acidophilus in the cecum, the 0.75 GEBE diet decreased the Escherichia coli level therein. These findings demonstrate that GEBE may improve the meat quality and cecal microbiota of yellow-feathered chickens, providing a basis for identifying candidate alternatives to conventional antibiotics as growth promoting feed additives.

16.
Am J Cancer Res ; 13(8): 3342-3367, 2023.
Article in English | MEDLINE | ID: mdl-37693148

ABSTRACT

Emerging research indicates that circRNAs serve a crucial role in occurrence and development of cancers. This study aimed to uncover the biological role of hsa_circ_0000519 in the progression of LUAD (lung adenocarcinoma). hsa_circ_0000519 was identified by bioinformatic analysis, and its differential expression was validated in LUAD tissues and cell lines. CCK8, colony formation, wound healing, transwell assays, and xenograft tumor models were used to observe the biological functions of hsa_circ_0000519. FISH, RIP, dual luciferase reporter assays, and recovery experiments were implemented to explore the underlying mechanisms of hsa_circ_0000519. hsa_circ_0000519 was significantly upregulated in LUAD tissues and cell lines. The expression of hsa_circ_0000519 was positively correlated with T grade and TNM stage in patients with LUAD. Downregulation of hsa_circ_0000519 remarkably reduced cell proliferation, migration, invasion in vitro, and tumor growth in vivo. Mechanistic investigation demonstrated that hsa_circ_0000519 directly sponged hsa-miR-1296-5p to reduce its repressive impact on DARS as well as activate the PI3K/AKT/mTOR signaling pathway. The malignant phenotypes of LUAD cells induced by upregulation of hsa_circ_0000519 could be rescued by hsa-miR-1296-5p overexpression or knockdown of DARS. In conclusion, hsa_circ_0000519 promotes LUAD progression through the hsa-miR-1296-5p/DARS axis and may be expected as a novel biomarker and therapeutic for LUAD.

17.
Pestic Biochem Physiol ; 194: 105528, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532337

ABSTRACT

Uridine diphosphate-glucuronosyltransferases (UGTs) are major multifunctional detoxification phase II enzymes involved in the metabolic detoxification of xenobiotics. However, their roles in insecticides resistance are still unclear. In this study, we identified two UGTs genes (UGT2B13 and UGT2C1) in Rhopalosiphum padi, a serious insect pest of wheat worldwide. Bioassays results showed that the resistance ratio of R. padi resistance strain (LC-R) to lambda-cyhalothrin (LC) was 2963.8 fold. The roles of UGT2B13 and UGT2C1 in lambda-cyhalothrin resistance were evaluated. Results indicated that the UGTs contents were significantly increased in the LC resistant strain of R. padi. UGT2B13 and UGT2C1 were significantly overexpressed in the LC-R strain. Transcription levels of UGT2B13 and UGT2C1 were relatively higher in the gut of LC-R strain. RNA interference (RNAi) of UGT2B13 or UGT2C1 significantly decreased the UGTs contents of the LC-R aphids and increased mortality of R. padi exposure to the LC50 concentration of LC. This study provides a new view that UGTs are involved in LC resistance of R. padi. The findings will promote further work to detailed the functions of UGTs in the metabolism resistance of insects to insecticides.


Subject(s)
Aphids , Insecticides , Pyrethrins , Animals , Insecticides/pharmacology , Pyrethrins/pharmacology , Nitriles/pharmacology , Insecticide Resistance/genetics
18.
Front Pharmacol ; 14: 1210129, 2023.
Article in English | MEDLINE | ID: mdl-37547331

ABSTRACT

Berberine (BBR) has a long history of use in the treatment of Rheumatoid arthritis (RA) and is considered one of the most promising natural product for the treatment of RA. However, oral administration of berberine has low bioavailability and requires frequent administration, resulting in poor patient compliance. In this study, we developed a BBR-loaded phospholipid-based phase separation gel (BBR-PPSG) to achieve sustained drug release and long-term therapeutic effect. The stability of BBR-PPSG was verified and it was found that it can be stored for a long time. The pharmacokinetic study on rats and rabbits showed that BBR-PPSG not only achieved 1-month of sustained release, but also significantly increased the area under the curve (AUC) by nearly 9-fold and prolonged the half-life (t1/2) by 10-fold. By constructing rat and rabbit models of RA, we also proved that BBR-PPSG administration once a month effectively alleviated joint swelling, and significantly reduce TNF-α levels in AIA rats and OIA rabbits. Histopathological analysis of rabbit joint sections revealed that after intra-articular injection of BBR-PPSG, the synovial cell layer remained intact, while in the model group, the synovial cells were significantly reduced and exhibited necrosis. MicroCT data analysis showed that the values of Tb.N and Tb. Sp in the BBR-PPSG group were significantly better than those in the model group (p < 0.05). This study addressed the limitations of frequent administration of BBR by developing a phospholipid-based phase separation gel system for berberine delivery, achieving long-term sustained release. The BBR-PPSG demonstrated good biocompatibility, simple preparation and excellent stability, thus holding potential as a novel pharmaceutical formulation for RA treatment.

19.
Adv Sci (Weinh) ; 10(25): e2300971, 2023 09.
Article in English | MEDLINE | ID: mdl-37424170

ABSTRACT

Accumulation of vimentin is the core event in epithelial-mesenchymal transition (EMT). Post-translational modifications have been widely reported to play crucial roles in imparting different properties and functions to vimentin. Here, a novel modification of vimentin, acetylated at Lys104 (vimentin-K104Ac) is identified, which is stable in lung adenocarcinoma (LUAD) cells. Mechanistically, NACHT, LRR, and PYD domain-containing protein 11 (NLRP11), a regulator of the inflammatory response, bind to vimentin and promote vimentin-K104Ac expression, which is highly expressed in the early stages of LUAD and frequently appears in vimentin-positive LUAD tissues. In addition, it is observed that an acetyltransferase, lysine acetyltransferase 7 (KAT7), which binds to NLRP11 and vimentin, directly mediates the acetylation of vimentin at Lys104 and that the cytoplasmic localization of KAT7 can be induced by NLRP11. Malignant promotion mediated by transfection with vimentin-K104Q is noticeably greater than that mediated by transfection with vimentin-WT. Further, suppressing the effects of NLRP11 and KAT7 on vimentin noticeably inhibited the malignant behavior of vimentin-positive LUAD in vivo and in vitro. In summary, these findings have established a relationship between inflammation and EMT, which is reflected via KAT7-mediated acetylation of vimentin at Lys104 dependent on NLRP11.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Humans , Histones/metabolism , Vimentin/metabolism , Lysine/metabolism , Adenocarcinoma of Lung/pathology , Lung Neoplasms/metabolism , Histone Acetyltransferases
20.
J Econ Entomol ; 116(5): 1795-1803, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37478406

ABSTRACT

Rhopalosiphum padi is an important global wheat pest. The pyrethroid insecticide bifenthrin is widely used in the control R. padi. We explored the resistance potential, cross-resistance, adaptive costs, and resistance mechanism of R. padi to bifenthrin using a bifenthrin-resistant strain (Rp-BIF) established in laboratory. The Rp-BIF strain developed extremely high resistance against bifenthrin (1033.036-fold). Cross-resistance analyses showed that the Rp-BIF strain had an extremely high level of cross-resistance to deltamethrin (974.483-fold), moderate levels of cross-resistance to chlorfenapyr (34.051-fold), isoprocarb (27.415-fold), imidacloprid (14.819-fold), and thiamethoxam (11.228-fold), whereas negative cross-resistance was observed to chlorpyrifos (0.379-fold). The enzymatic activity results suggested that P450 played an important role in bifenthrin resistance. A super-kdr mutation (M918L) of voltage-gated sodium channel (VGSC) was found in the bifenthrin-resistant individuals. When compared with the susceptible strain (Rp-SS), the Rp-BIF strain was significantly inferior in multiple life table parameters, exhibiting a relative fitness of 0.69. Our toxicological and biochemical studies indicated that multiple mechanisms of resistance might be involved in the resistance trait. Our results provide insight into the bifenthrin resistance of R. padi and can contribute to improve management of bifenthrin-resistant R. padi in the field.


Subject(s)
Aphids , Chlorpyrifos , Hemiptera , Insecticides , Pyrethrins , Humans , Animals , Aphids/genetics , Pyrethrins/pharmacology , Thiamethoxam , Insecticide Resistance/genetics , Insecticides/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...