Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Redox Biol ; 56: 102447, 2022 10.
Article in English | MEDLINE | ID: mdl-36027677

ABSTRACT

The regulation of mitochondria function and health is a central node in tissue maintenance, ageing as well as the pathogenesis of various diseases. However, the maintenance of an active mitochondrial functional state and its quality control mechanisms remain incompletely understood. By studying mice with a mitochondria-targeted reporter that shifts its fluorescence from "green" to "red" with time (MitoTimer), we found MitoTimer fluorescence spectrum was heavily dependent on the oxidative metabolic state in the skeletal muscle fibers. The mitoproteolytic activity was enhanced in an energy dependent manner, and accelerated the turnover of MitoTimer protein and respiratory chain substrate, responsible for a green predominant MitoTimer fluorescence spectrum under the oxidative conditions. PGC1α, as well as anti-ageing regents promoted enhanced mitoproteolysis. In addition, cells with the green predominant mitochondria exhibited lower levels of MitoSox and protein carbonylation, indicating a favorable redox state. Thus, we identified MitoTimer as a probe for mitoproteolytic activity in vivo and found a heightened control of mitoproteolysis in the oxidative metabolic state, providing a framework for understanding the maintenance of active oxidative metabolism while limiting oxidative damages.


Subject(s)
Mitochondria , Oxidative Phosphorylation , Animals , Fluorescence , Mice , Mitochondria/metabolism , Muscle, Skeletal/metabolism , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism
2.
Talanta ; 239: 123063, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34890938

ABSTRACT

In this work, a laser-induced fluorescence (LIF) detection system built in a modular assembling mode was developed based on commercial LEGO blocks and 3D printed blocks. We designed and fabricated a variety of 3D printed building blocks fixed with optical components, including laser light source, filters, lens, dichroic mirror, photodiode detector, and control circuits. Utilizing the relatively high positioning precision of the plug-in blocks, a modular construction strategy was adopted using the flexible plug-in combination of the blocks to build a highly sensitive laser-induced fluorescence detection system, LIFGO. The LIFGO system has a simple structure which could be constructed by inexperienced users within 3 h. We optimized the structure and tested the performance of the LIFGO system, and its detection limits for sodium fluorescein solution in 100 µm i.d. and 250 µm i.d. capillaries were 7 nM and 0.9 nM, respectively. Based on the LIFGO system, we also built a simple capillary electrophoresis (CE) system and applied it to the analysis of DNA fragments to demonstrate its application possibility in biochemical analysis. The separation of 7 fragments in DL500 DNA markers were completed in 600 s. Because of the features of low cost (less than $100) and easy-to-build construction, we introduced the LIFGO system to the experimental teaching of instrumental analysis for undergraduate students. The modular construction form of the LIF detection system greatly reduces the threshold of instrument construction, which is conducive to the popularization of the LIF detection technique in routine laboratories as well as the reform of experimental teaching mode.


Subject(s)
Electrophoresis, Capillary , Lasers , DNA , Fluorescein , Fluorescence , Humans
3.
J Cell Mol Med ; 25(16): 7840-7854, 2021 08.
Article in English | MEDLINE | ID: mdl-34227742

ABSTRACT

Insulin-independent glucose metabolism, including anaerobic glycolysis that is promoted in resistance training, plays critical roles in glucose disposal and systemic metabolic regulation. However, the underlying mechanisms are not completely understood. In this study, through genetically manipulating the glycolytic process by overexpressing human glucose transporter 1 (GLUT1), hexokinase 2 (HK2) and 6-phosphofructo-2-kinase-fructose-2,6-biphosphatase 3 (PFKFB3) in mouse skeletal muscle, we examined the impact of enhanced glycolysis in metabolic homeostasis. Enhanced glycolysis in skeletal muscle promoted accelerated glucose disposal, a lean phenotype and a high metabolic rate in mice despite attenuated lipid metabolism in muscle, even under High-Fat diet (HFD). Further study revealed that the glucose metabolite sensor carbohydrate-response element-binding protein (ChREBP) was activated in the highly glycolytic muscle and stimulated the elevation of plasma fibroblast growth factor 21 (FGF21), possibly mediating enhanced lipid oxidation in adipose tissue and contributing to a systemic effect. PFKFB3 was critically involved in promoting the glucose-sensing mechanism in myocytes. Thus, a high level of glycolysis in skeletal muscle may be intrinsically coupled to distal lipid metabolism through intracellular glucose sensing. This study provides novel insights for the benefit of resistance training and for manipulating insulin-independent glucose metabolism.


Subject(s)
Adipose Tissue/physiology , Glucose Transporter Type 1/metabolism , Glycolysis , Hexokinase/metabolism , Homeostasis , Muscle, Skeletal/physiology , Phosphofructokinase-2/metabolism , Animals , Animals, Genetically Modified , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Line , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Glucose/metabolism , Glucose Transporter Type 1/genetics , Hexokinase/genetics , Humans , Lipid Metabolism , Male , Mice , Mice, Transgenic , Phosphofructokinase-2/genetics
4.
Talanta ; 230: 122329, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33934786

ABSTRACT

There is a growing urgent requirement for miniaturized laser-induced fluorescence (LIF) detection systems in many research fields. In this work, miniaturized LIF detectors with three different optical configurations of orthogonal, confocal, and oblique were developed, using a laser diode as the excitation source and a photodiode as the photodetector. The computer simulation and experimental methods were used to investigate the distributions of laser scattered light and fluorescent light near the detection window. Other conditions including the solution preparation, sample flow rate, alignment method and filter model were also optimized. Under the optimized conditions, the detection limits of sodium fluorescein for orthogonal and confocal LIF detectors were 40 pM and 50 pM, respectively, while the limit of detection (LOD) for oblique LIF detector were 1 nM (45°) and 7 nM (67.5°). We further built a fully integrated handheld orthogonal LIF detector with a total size of 50 × 20 × 46 mm3, a cost of $380, and a detection limit of 10 pM for sodium fluorescein. It is expected that such a LIF detector could be applied in field analysis as a portable instrument or in other analysis systems as a detection module.

SELECTION OF CITATIONS
SEARCH DETAIL
...