Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(27): 31257-31266, 2022 Jul 13.
Article in English | MEDLINE | ID: mdl-35776539

ABSTRACT

Strong and robust stimulations to human skins with low driving voltages under high moisture working conditions are desirable for wearable haptic feedback applications. Here, a soft actuator based on the "air bubble" electret structure is developed to work in high-moisture environments and produce haptic sensations to human skin with low driving voltages. Experimentally, the water soaking and drying process has been conducted repeatedly for the first time and the 20th time to test the antimoisture ability of the actuator as it recovers its output force up 90 and 65% of the initial value, respectively. The threshold voltages for sensible haptic sensations for the fingertip and palm of volunteers have been characterized as 7 and 10 V, respectively. Furthermore, a demonstration example has been designed and conducted in a virtual boxing game to generate the designated haptic sensations according to the gaming conditions with an accuracy of 98% for more than 100 tests. As such, the design principle, performance characteristic, and demonstration example in this work could inspire various applications with improved reliability for wearable haptic devices.


Subject(s)
Touch Perception , Equipment Design , Feedback, Sensory , Haptic Technology , Humans , Reproducibility of Results , Touch , User-Computer Interface
2.
ACS Nano ; 16(1): 1533-1546, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34939410

ABSTRACT

A time- and cost-effective fabrication methodology via a two-mode mechanical cutting process for multilayer stretchable electronics has been developed without using the conventional photolithography-based processes. A commercially available vinyl cutter is used for defining complex patterns on designated material layers by adjusting the applied force and the depth of the cutting blade. Two distinct modes of mechanical cutting can be achieved and employed to establish the basic fabrication procedures for common features in stretchable electronics, such as the metal interconnects, contact pads, and openings by the "tunnel cut" mode, and the flexible overall structure by the "through cut" mode. Three robust and resilient stretchable systems have been demonstrated, including a water-resistant, omnidirectionally stretchable supercapacitor array, a stretchable mesh applicable in sweat extraction and sensing, and a skin-mountable human breathing monitoring patch. Results show excellent electronic performances of these devices made of multilayer functional materials after repetitive large deformations.

3.
Nat Commun ; 12(1): 5287, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489424

ABSTRACT

A variety of autonomous oscillations in nature such as heartbeats and some biochemical reactions have been widely studied and utilized for applications in the fields of bioscience and engineering. Here, we report a unique phenomenon of moisture-induced electrical potential oscillations on polymers, poly([2-(methacryloyloxy)ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide-co-acrylic acid), during the diffusion of water molecules. Chemical reactions are modeled by kinetic simulations while system dynamic equations and the stability matrix are analyzed to show the chaotic nature of the system which oscillates with hidden attractors to induce the autonomous surface potential oscillation. Using moisture in the ambient environment as the activation source, this self-excited chemoelectrical reaction could have broad influences and usages in surface-reaction based devices and systems. As a proof-of-concept demonstration, an energy harvester is constructed and achieved the continuous energy production for more than 15,000 seconds with an energy density of 16.8 mJ/cm2. A 2-Volts output voltage has been produced to power a liquid crystal display toward practical applications with five energy harvesters connected in series.

4.
Biosens Bioelectron ; 193: 113616, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34543862

ABSTRACT

One grand challenge in haptic human-machine interface devices is to electromechanically stimulate sensations on the human skin wirelessly by thin and soft patches under a low driving voltage. Here, we propose a soft haptics-feedback system using highly charged, polymeric electret films with an annulus-shape bump structure to induce mechanical sensations on the fingertip of volunteers under an applied voltage range of 5-20 V. As an application demonstration, a 3 × 3 actuators array is used for transmitting patterned haptic information, such as letters of 'T', 'H', 'U' letters and numbers of '0', '1', '2'. Moreover, together with flexible lithium batteries and a flexible circuit board, an untethered stimulation patch is constructed for operations of 1 h. The analytical model, design principle, and performance characterizations can be applicable for the integration of other wearable electronics toward practical applications in the fields of AR (augmented reality), VR (virtual reality) and robotics.


Subject(s)
Biosensing Techniques , User-Computer Interface , Equipment Design , Feedback , Fingers , Humans
5.
ACS Appl Mater Interfaces ; 11(4): 3971-3977, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-30604959

ABSTRACT

Scaling up electrochemical water splitting is nowadays in high demand for hydrogen economy implementation. Tremendous efforts over the past decade have been focused on exploring alternative catalytic materials, including a variety of earth-abundant transition-metal-based catalysts, to replace traditional noble metals such as Pt, Ir, or Ru. Nevertheless, few efforts have been carried out for (1) scalable catalyst synthesis on current collectors and (2) practical device design toward large-scale H2 generation. Herein, we designed a modular alkaline water-splitting electrolyzer system with scaled-up metal foam electrodes covered by low-cost NiMo alloy and Ni3Fe oxide for efficient hydrogen evolution and oxygen evolution, respectively. An electrolyte circulation system facilitates the mass transport and thus can further boost the H2 generation particularly under large currents. As a result, the overall water-splitting performance of one-unit cell with a dimension of 10 × 10 cm2 under room temperature presents an early onset voltage of 1.54 V and delivered practical currents of 20 and 55 A (9.1 and 25.0 L/h H2 generation) under 2.2 and 2.9 V without iR compensations, respectively. This demonstration could stimulate new focuses in water splitting toward more practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...