Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chin J Physiol ; 66(6): 534-545, 2023.
Article in English | MEDLINE | ID: mdl-38149566

ABSTRACT

Colon cancer is a disease with high prevalence worldwide. This study sought to investigate Kruppel-like factor 17 (KLF17) mechanism in the development of colon cancer through four-and-a-half-LIM domain protein 1 (FHL1). In colon cancer cells, KLF17 and FHL1 expression was detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. After gain- and loss-of-function experiments in colon cancer cells, cell proliferative, invasive, and migrating abilities were tested by cell counting kit-8, transwell, and scratch assays, respectively. The expression of epithelial-mesenchymal transition (EMT)-related genes, E-cadherin, N-cadherin, and Vimentin, was measured by RT-qPCR and Western blot. Chromatin immunoprecipitation and dual-luciferase reporter gene assays were performed to detect the binding of KLF17 and the FHL1 promoter. Finally, a transplantation tumor model in nude mice was established for in vivo validation. Mechanistically, KLF17 facilitated FHL1 transcription by binding to the FHL1 promoter. KLF17 or FHL1 upregulation suppressed the colon cancer cell proliferative, invasive, and migrating capacities, accompanied by elevated E-cadherin expression and diminished N-cadherin and Vimentin expression. Furthermore, FHL1 silencing abrogated the repressive impacts of KLF17 upregulation on colon cancer cell EMT, proliferative, invasive, and migrating capabilities. Furthermore, KLF17 augmented FHL1 expression and curtailed the growth of transplanted tumors in nude mice. Conclusively, KLF17 promoted FHL1 transcription, thereby impeding the invasion, migration, and EMT of colon cancer cells.


Subject(s)
Colonic Neoplasms , Transcription Factors , Animals , Mice , Up-Regulation , Mice, Nude , Vimentin/genetics , Vimentin/metabolism , Cell Line, Tumor , Transcription Factors/genetics , Transcription Factors/metabolism , Colonic Neoplasms/genetics , Cell Movement/genetics , Cadherins/genetics , Cadherins/metabolism , Epithelial-Mesenchymal Transition/genetics , Cell Proliferation , Gene Expression Regulation, Neoplastic
2.
Genet Res (Camb) ; 2022: 1256021, 2022.
Article in English | MEDLINE | ID: mdl-36407082

ABSTRACT

Backgrounds: Solute carrier 39A1 (SLC39A1) is an indirect zinc transporter which showed diverse tumor-related functions in different malignancies. Here, we aimed to investigate its expression and role in gastric adenocarcinoma. Methods: A retrospective gastric adenocarcinoma cohort (n = 154) was collected from our hospital to test their tissue expression of SLC39A1 through immunohistochemical staining method. After SLC39A1 overexpression or knockdown, proliferation and invasion assays were conducted for proliferation and invasion estimation, respectively. Xenograft in nude mice was used as the in vivo strategy to validate in vitro findings. Results: Compared with adjacent stomach tissues, gastric adenocarcinoma tissues showed significantly higher SLC39A1 on both mRNA and protein levels. Higher SLC39A1 was observed in patients with larger tumor size (P=0.003) and advanced tumor stages (P < 0.001). Univariate (P=0.001) and multivariate analyses (P=0.035) confirmed the independent prognostic significance of SLC39A1 on gastric adenocarcinoma outcomes. The median survival time was 22.0 months in patients with high-SLC39A1 expression, while up to 57.0 months in those with low-SLC39A1 (P=0.001). In vitro and in vivo assays demonstrated that overexpressing SLC39A1 could promote gastric cancer growth and invasion, while silencing SLC39A1 led to opposite effects. Conclusions: Aberrant high-SLC39A1 expression can serve as an independent unfavorable prognostic factor for gastric adenocarcinoma. High SLC39A1 is critical for a more aggressive tumor phenotype by promoting cell proliferation and invasion. Therefore, targeting SLC39A1 may provide novel therapeutic insights.


Subject(s)
Adenocarcinoma , Cation Transport Proteins , Stomach Neoplasms , Mice , Animals , Humans , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Mice, Nude , Retrospective Studies , Neoplasm Invasiveness/genetics , Prognosis , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cell Proliferation/genetics , Cation Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...