Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bone ; : 117146, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38844017

ABSTRACT

Obesity has become a major global health problem and the effect on bone formation has received increasing attention. However, the interaction between obesity and bone metabolism is complex and still not fully understood. Here, we show that caveolin-1 (Cav1), a membrane scaffold protein involved in regulating a variety of cellular processes, plays a key regulatory role as a bridge connecting obesity and bone metabolism. High-fat diet (HFD)-induced obese C57BL/6J mouse displayed a significant increase in Cav1 expression and lower osteogenic activity; In vitro treatment of osteoblastic MC3T3-E1 cells with 1 mM free fatty acids (FFA) significantly promoted Cav1 expression and PINK1/Parkin regulated mitophagy, but inhibited the expression of osteogenic marker genes. Conversely, reduced expression of the Cav1 gene prevented these effects. Both endogenous oxidative stress and Sirt1 pathway were also significantly reduced after Cav1 knockdown in FFA-treated cells. Finally, Cav1-Sirt1 docking and co-immunoprecipitation results showed that Cav1 interacted with Sirt1 and FFA enhanced the interaction. Taken together, these results suggest that obesity impairs bone development and formation through up-regulation of the Cav1 gene, which lead to inhibition of Sirt1/FOXO1 and Sirt1/PGC-1α signaling pathways through interacting with Sirt1 molecule, and an increase of mitophagy level.

2.
ACS Appl Mater Interfaces ; 16(22): 28719-28730, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38801672

ABSTRACT

Transition metal fluorides are potentially high specific energy cathode materials of next-generation lithium batteries, and strategies to address their low conductivity typically involve a large amount of carbon coating, which reduces the specific energy of the electrode. In this study, MnyFe1-yF3@CFx was generated by the all-fluoride strategy, converting most of the carbon in MnyFe1-yF3@C into electrochemical active CFx through a controllable NF3 gas phase fluorination method, while still retaining a tightly bound graphite layer to provide initial conductivity, which greatly improved the energy density of the composite. This synergistic effect of nonfluorinated residual carbon (∼11%) and Mn doping ensures the electrochemical kinetics of the composite. The loading mass of the active substance had been increased to 86%. The theoretical and actual discharge capacity of MnyFe1-yF3@CFx composite was up to 765 mAh g-1 (pure FeF3 is 712 mAh g-1) and 728 mAh g-1, respectively. The discharge capacity at the high-voltage (3.0 V) platform was more than three times higher than that of the non-Mn-doped composite (FeF3@CFx).

3.
Biomolecules ; 14(4)2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38672499

ABSTRACT

Obesity, characterized by the excessive accumulation of adipose tissue, has emerged as a major public health concern worldwide. To develop effective strategies for treating obesity, it is essential to comprehend the biological properties of different adipose tissue types and their respective roles in maintaining energy balance. Adipose tissue serves as a crucial organ for energy storage and metabolism in the human body, with functions extending beyond simple fat storage to encompass the regulation of energy homeostasis and the secretion of endocrine factors. This review provides an overview of the key characteristics, functional differences, and interconversion processes among white adipose tissue (WAT), brown adipose tissue (BAT), and beige adipose tissue. Moreover, it delves into the molecular mechanisms and recent research advancements concerning the browning of WAT, activation of BAT, and whitening of BAT. Although targeting adipose tissue metabolism holds promise as a potential approach for obesity treatment, further investigations are necessary to unravel the intricate biological features of various adipose tissue types and elucidate the molecular pathways governing their interconversion. Such research endeavors will pave the way for the development of more efficient and targeted therapeutic interventions in the fight against obesity.


Subject(s)
Adipose Tissue, Beige , Adipose Tissue, Brown , Adipose Tissue, White , Energy Metabolism , Homeostasis , Obesity , Humans , Adipose Tissue, Brown/metabolism , Adipose Tissue, Beige/metabolism , Adipose Tissue, White/metabolism , Animals , Obesity/metabolism , Thermogenesis , Adipose Tissue/metabolism
4.
ACS Appl Mater Interfaces ; 16(5): 6133-6142, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38272837

ABSTRACT

With the rapid development of information technology, the encrypted storage of information is becoming increasingly important for human life. The luminescent materials with a color-changed response under physical or chemical stimuli are crucial for information coding and anticounterfeiting. However, traditional fluorescent materials usually face problems such as a lack of tunable fluorescence, insufficient surface-adaptive adhesion, and strict synthesis conditions, hindering their practical applications. Herein, a series of luminescent lanthanide hybrid organogels (Ln-MOGs) were rapidly synthesized using a simple method at room temperature through the coordination between lanthanide ions and 2,6-pyridinedicarboxylic acid and 5-aminoisophthalic acid. And the multicolor fluorescent inks were also prepared based on the Ln-MOG and hyaluronic acid, with the advantages of being easy to write, color-adjustable, and water-responsive discoloration, which has been applied to paper-based anticounterfeiting technology. Inspired by the responsiveness of the fluorescent inks to water, we designed a logic system that can realize single-input logic operations (NOT and PASS1) and double-input logic operations (NAND, AND, OR, NOR, XOR). The encryption of a binary code can be actualized utilizing different luminescent response modes based on the logic circuit system. By adjusting the energy sensitization and luminescence mechanism of lanthanide ions in the gel structure, the information reading and writing ability of the fluorescent inks were verified, which has great potential in the field of multicolor pattern anticounterfeiting and information encryption.

5.
J Affect Disord ; 294: 279-285, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34304082

ABSTRACT

BACKGROUND: COVID-19 has become a public health emergency based on its clinical characteristics. Previous studies demonstrated that the onset of a sudden and immediately life-threatening illness could lead to extraordinary amounts of psychological pressure on nurses who play an important role in the illness. Whether COVID-19 pandemic has greater impacts on the psychological status and somatic symptoms from nurses who stand in the frontline of this crisis remain unclear. METHODS: We evaluated post-traumatic stress disorder (PTSD), anxiety and somatic symptoms in the frontline nurses (n = 438) who served in Wuhan, China, during COVID-19 crisis. Nurses who did not worked in the frontline of COVID-19 served as controls (n = 452). The investigation was processed by online questionnaires including: impact of event scale-revised (IES-R) , self-rating anxiety scale (SAS), and somatic symptoms. RESULTS: Prevalence of moderate and severe PTSD was significantly increased in the frontline nurses compared to non-frontline nurses. Prevalence of mild anxiety was significantly increased in frontline nurses compared to non-frontline nurses. There were more frontline nurses suffering from severe insomnia and losing weight compared to non-frontline nurses. Severity of PTSD (IES-R score), but not severity of anxiety (SAS score) was similarly positively correlated to incidence of insomnia and weight loss in both frontline and non-frontline nurses to a similar extent. LIMITATIONS: The results only represented psychological statues and somatic symptom on one time point thus the development of psychological stress and somatic symptom during pandemic of COVID-19 in the frontline nurses were missing. CONCLUSIONS: COVID-19 negatively impacted on psychological and somatic status in frontline nurses. PTSD may be the most reliability and validity criteria for evaluating psychological and somatic status for frontline nurses of COVID-19.


Subject(s)
COVID-19 , Nurses , Anxiety , Cross-Sectional Studies , Depression , Humans , Pandemics , Reproducibility of Results , SARS-CoV-2 , Stress, Psychological/epidemiology
6.
Nat Commun ; 10(1): 1506, 2019 04 03.
Article in English | MEDLINE | ID: mdl-30944328

ABSTRACT

Alkaline polymer electrolyte fuel cells are a class of fuel cells that enable the use of non-precious metal catalysts, particularly for the oxygen reduction reaction at the cathode. While there have been alternative materials exhibiting Pt-comparable activity in alkaline solutions, to the best of our knowledge none have outperformed Pt in fuel-cell tests. Here we report a Mn-Co spinel cathode that can deliver greater power, at high current densities, than a Pt cathode. The power density of the cell employing the Mn-Co cathode reaches 1.1 W cm-2 at 2.5 A cm-2 at 60 oC. Moreover, this catalyst outperforms Pt at low humidity. In-depth characterization reveals that the remarkable performance originates from synergistic effects where the Mn sites bind O2 and the Co sites activate H2O, so as to facilitate the proton-coupled electron transfer processes. Such an electrocatalytic synergy is pivotal to the high-rate oxygen reduction, particularly under water depletion/low humidity conditions.

7.
ACS Appl Mater Interfaces ; 10(39): 33581-33588, 2018 Oct 03.
Article in English | MEDLINE | ID: mdl-30198705

ABSTRACT

Alkaline polymer electrolyte fuel cells (APEFCs) are a new class of electrochemical devices that intrinsically enable the use of nonprecious metal catalysts. As an important component of APEFCs, alkaline polymer electrolytes (APEs) have been a research focus in recent decades. To minimize the ohmic loss and to facilitate the water transport, the APE membrane should be as thin as possible, which generally requires a trade-off between the ionic conductivity and the mechanical robustness/dimensional stability of the membrane. Here, we report a new reinforced APE membrane that can effectively disentangle such a trade-off. The quaternary ammonia poly(ether ether ketone) (QAPEEK) membrane is highly conductive but suffers from the overuptake of water, which leads to significant membrane swelling and weak mechanical strength. Upon reinforcing with sulfonated nanobamboo fiber (s-NBF), the swelling degree decreases from 27.5 to 7.5% in 80 °C water. The thickness of such an s-NBF/QAPEEK membrane can then be reduced to 15 µm, which diminishes the electrical resistance, very suitable for APEFC applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...