Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-31834586

ABSTRACT

Posterior lumbar interbody fusion (PLIF) with a spacer and posterior instrument (PI) via minimally invasive surgery (MIS) restores intervertebral height in degenerated disks. To align with MIS, the spacer has to be shaped with a slim geometry. However, the thin spacer increases the subsidence and migration after PLIF. This study aimed to propose a new lumbar fusion approach using bone cement to achieve a larger supporting area than that achieved by the currently used poly aryl-ether-ether-ketone (PEEK) spacer and assess the feasibility of this approach using a sawbone model. Furthermore, the mechanical responses, including the range of motion (ROM) and bone stress with the bone cement spacer were compared to those noted with the PEEK spacer by finite element (FE) simulation. An FE lumbar L3-L4 model with PEEK and bone cement spacers and PI was developed. Four fixing conditions were considered: intact lumbar L3-L4 segment, lumbar L3-L4 segment with PI, PEEK spacer plus PI, and bone cement spacer plus PI. Four kinds of 10-NM moments (flexion, extension, lateral bending, and rotation) and two different bone qualities (normal and osteoporotic) were considered. The bone cement spacer yielded smaller ROMs in extension and rotation than the PEEK spacer, while the ROMs of the bone cement spacer in flexion and lateral bending were slightly greater than with the PEEK spacer. Compared with the PEEK spacer, peak contact pressure on the superior surface of L4 with the bone cement spacer in rotation decreased by 74% (from 8.68 to 2.25 MPa) and 69.1% (from 9.1 to 2.82 MPa), respectively, in the normal and osteoporotic bone. Use of bone cement as a spacer with PI is a potential approach to decrease the bone stress in lumbar fusion and warrants further research.

2.
J Dent Sci ; 14(3): 288-294, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31528257

ABSTRACT

BACKGROUND/PURPOSE: The purpose of this study was to evaluate the marginal gaps of dental restorations manufactured using conventional loss wax and casting, computer-aided design/computer-aided manufacturing (CAD/CAM), and 3D printing methods. MATERIALS AND METHODS: A zirconia master die model with an upper right first molar resin crown was prepared as a standardized model. A total of 30 resin master die models were duplicated from this standard model. Simultaneously, 10 Co-Cr-Mo metal crowns were individually obtained using the conventional loss wax and casting method (Group A), selective laser sintering (Group B), and CAD/CAM (Group C), respectively. The marginal gaps between the crowns fabricated conventional and digital methods with master die models were calculated using a 3D replica and mapping technique. RESULTS: Statistical analyses revealed there were significant differences in the marginal gaps in the group A with group B and C (p < 0.05). The mean marginal gaps between dental crowns with die models were 76 ±â€¯61 µm, 116 ±â€¯92 µm, and 121 ±â€¯98 µm for groups A, B, and C, respectively. CONCLUSION: Within the limitations of this study, the marginal gaps were clinical acceptable in conventional and digital techniques.

3.
J Orthop Surg (Hong Kong) ; 27(3): 2309499019861145, 2019.
Article in English | MEDLINE | ID: mdl-31311422

ABSTRACT

PURPOSE: Tibial tubercle osteotomy (TTO) is a surgical technique used in the management of severe fractures of the knee joint and revision total knee arthroplasty. Limited research discusses the performance of the osteotomy and fixation of the TTO with screws. Therefore, this study investigated the effects of fragment shape and screw configuration on the mechanical behavior in the fixation of the TTO using the finite element (FE) method. METHODS: FE TTO models with three fragment shapes and three screw configurations were developed. The three fragment shapes were a step cut, bevel cut, and straight cut. The screw configurations were two parallel horizontal and downward screws and two trapezoidal screws. A 1654-N upward tension force was applied on the tibia tubercle, and the distal end of the tibia was completely fixed. RESULTS: The results indicated that the step cut resulted in higher stability than the bevel and straight cut, but the stress was higher as well. Among the screw configurations, two parallel downward screws resulted in the highest stability, given the same fragment shape. In the horizontal configuration, the step cut tibia developed the largest contact force to achieve stability of the bone fragment under loading. CONCLUSION: The fragment shape with a step cut and fixation with two parallel horizontal or downward screws are suggested for TTO, while the trapezoidal screw configuration is not suggested. Furthermore, the downward screw configuration is a suitable strategy to reduce bone stress.


Subject(s)
Bone Screws , Finite Element Analysis , Fracture Fixation, Internal/methods , Osteotomy/methods , Tibia/surgery , Tibial Fractures/surgery , Biomechanical Phenomena , Humans , Mechanical Phenomena , Tibia/diagnostic imaging , Tibia/physiopathology , Tibial Fractures/diagnosis , Tibial Fractures/physiopathology , Tomography, X-Ray Computed
4.
Med Eng Phys ; 68: 57-64, 2019 06.
Article in English | MEDLINE | ID: mdl-30975631

ABSTRACT

Tibial tubercle osteotomy (TTO) is commonly performed in cases of complicated juxta-articular trauma or revision total knee arthroplasty. However, strategies for firmly fixing the resulting osteotomy bone fragment are not sufficiently understood. This study aims to investigate the effect of the location of the gap between the fragment and the tibia and with various fixed screw configurations on TTO stability, contact force on the fragment, and bone stress by using the finite element method. A TTO model with a 1-mm gap, either above or below the fragment, was developed. Furthermore, five screw configurations, including two parallel horizontal screws placed at 20- and 30-mm intervals, two parallel downward screws, two trapezoid screws, and two divergent screws, were used. A vertically upward 1600-N force was applied on the tibial tubercle to mimic a worst-case condition. Placing the fragment close to the superior cutting plane (above the gap) yielded greater stability and less stress on the bone than did placing it close to the inferior cutting plane. The superior cutting plane of the tibia generated the largest contact force on the superior plane of the fragment for static balance under loading. Additionally, among all screw configurations, the configuration involving two parallel downward screws resulted in the highest stability but also the greatest stress on the cortical bone. The fragment obtains a solid barrier and support from the tibia immediately after surgery to against the patellar tension force when the fragment is close to the superior cutting plane of the tibia.


Subject(s)
Finite Element Analysis , Osteotomy/methods , Tibia/surgery , Bone Screws , Mechanical Phenomena , Osteotomy/instrumentation
5.
BMC Musculoskelet Disord ; 20(1): 99, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30832645

ABSTRACT

BACKGROUND: Cannulated screws with an anterior wire are currently used for managing transverse patellar fracture. However, the addition of anterior wiring with various types of screws via open surgery to increase the mechanical stability is yet to be determined. Hence, this study aimed to compare the mechanical behaviors of a fractured patella fixed with various screws types and at various screw locations with and without the anterior wire. The present study hypothesized that using the anterior wire reduces the fracture gap formation. METHODS: A finite element (FE) model containing a fractured patella fixed with various types of cannulated screws and anterior wiring was created in this study. Three types of screws, namely partial thread, full thread, and headless compression screws, and two screw depths, namely 5 and 10 mm away from the anterior surface of the patella, were included. The effect of the anterior wire was clarified by comparing the results of surgical fixation with and without the wire. Two magnitudes and two loading directions were used to simulate and examine the mechanical responses of the fractured patella with various fixation conditions during knee flexion/extension. RESULTS: Compared with partial thread and headless compression screws, the full thread screw increased the stability of the fractured patella by reducing fragment displacement, fracture gap formation, and contact pressure while increasing the contact area at the fracture site. Under 400-N in the direction 45°, the full thread screw with 5-mm placement reduced the gap formation by 86.7% (from 2.71 to 0.36 mm) and 55.6% (from 0. 81 to 0. 36 mm) compared with the partial thread screw with 10-mm placement, respectively without and with the anterior wire. CONCLUSION: The anterior wire along with the full thread screw is preferentially recommended for maintaining the surgical fixation of the fractured patella. Without the use of anterior wiring, the full thread screw with 5-mm placement may be considered as a less invasive alternative; however, simple screw fixation at a deeper placement (10 mm) is least recommended for the fixation of transverse patellar fracture.


Subject(s)
Bone Screws , Bone Wires , Finite Element Analysis , Fracture Fixation, Internal/instrumentation , Fractures, Bone/surgery , Patella/surgery , Fracture Fixation, Internal/methods , Fractures, Bone/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Materials Testing/instrumentation , Materials Testing/methods , Patella/diagnostic imaging , Patella/injuries , Weight-Bearing/physiology
6.
J Orthop Surg Res ; 14(1): 35, 2019 Jan 28.
Article in English | MEDLINE | ID: mdl-30691494

ABSTRACT

BACKGROUND: To maintain the corrected alignment after high tibial osteotomy (HTO), fixation with titanium locking plate and screws is widely used in current practice; however, screw breakage is a common complication. Thus, this study was to investigate the mechanical stability of HTO with locking plate and various screw fixations, including the length as well as the type. METHODS: A finite element (FE) model involving a distal femur, meniscus, and a proximal tibia with HTO fixed with a titanium locking plate and screws was created. The angle of the medial open wedge was 12°, and bone graft was not used. Two types of screws, namely conventional locking and far-cortical locking screws, with various lengths and configurations were used. At the proximal tibia, conventional locking screws with different lengths, 30 and 55 mm, were used; at the tibia shaft, different screw fixations including one-cortical, two-cortical, and far-cortical locking screws were used. RESULTS: The use of far-cortical locking screw generated the highest equivalent stress on the screws, which was four times (from 137.3 to 541 MPa) higher than that of the one-cortical screw. Also, it led to the maximum deformation of the tibia and a greater gap deformation at the osteotomy site, which was twice (from 0.222 to 0.442 mm) larger than that of the one-cortical screw. The effect of different locking screw length on tibia deformation and implant stress was minor. CONCLUSION: Thus, far-cortical locking screws and plates increase interfragmentary movement but the screw stress is relatively high. Increasing the protection time (partial weight duration) is suggested to decrease the risk of screw breakage in HTO through fixation with titanium far-cortical locking screws and plates.


Subject(s)
Models, Biological , Osteotomy/instrumentation , Tibia/surgery , Biomechanical Phenomena , Bone Plates , Bone Screws , Finite Element Analysis , Humans , Osteoarthritis, Knee/surgery , Stress, Mechanical , Tibia/physiology , Titanium
7.
Injury ; 50(2): 263-271, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30554895

ABSTRACT

INTRODUCTION: To date, the effects of various screw configurations on the stability of tibial tubercle osteotomy (TTO) are not completely understood. Hence, the first aim of this study is to evaluate the stability of TTO under various screw configurations. The second aim is to evaluate the internal stresses in the bone and the contact forces on the bone fragment that are developed by the tibia and screws in response to the applied load after the equilibrant is revealed. METHODS: To calculate the biomechanical responses of the bone and screw under loading, finite element (FE) method was used in this study. Six types of screw configurations were studied in the simulation: two parallel horizontal screws placed at a 20 mm interval, two parallel horizontal screws placed at a 30 mm interval, two parallel upward screws, two parallel downward screws, two trapezoid screws, and two divergent screws. The displacement of the bone fragment, contact forces on the fragment, and the internal stress in the bone were used as indices for comparison. RESULTS: Among all configurations, the configuration of two parallel downward screws yielded the highest stability with the lowest fragment displacement and gap opening. Although the maximum displacement of the TTO with the configuration of two parallel horizontal screws was slightly higher than that of the downward configuration, the difference was only 0.2 mm. The configuration of two upward screws resulted in the highest fragment displacement and gap deformation between the fragment and tibia. The stress of the osteotomized bone fragment was highest with the configuration of two upward screws. CONCLUSION: Based on the present model, the current configuration of two parallel horizontal screws is recommended for TTO. If this is inappropriate in a specific clinical scenario, then the downward screw configuration may be used as an alternative. By contrast, the configuration of two parallel upward screws is least suggested for the fixation of TTO.


Subject(s)
Fracture Fixation, Internal/methods , Materials Testing/methods , Osteotomy/methods , Tibia/surgery , Biomechanical Phenomena , Bone Plates , Bone Screws , Finite Element Analysis , Humans , Stress, Mechanical , Tibia/anatomy & histology
8.
J Orthop Surg (Hong Kong) ; 26(3): 2309499018789705, 2018.
Article in English | MEDLINE | ID: mdl-30037293

ABSTRACT

PURPOSE: Clinical and biomechanical studies have reported that using supportive screws and a wire instead of the common Kirschner wires for modified tension band wiring improves the stability of fractured patellae. However, the effect of screw proximity on the fixation of a fractured patella remains unclear. Therefore a numerical study was conducted to examine the effects of screw proximity on biomechanical responses in a simulated patellar fracture fixed using two parallel cannulated screws and anterior tension band wiring. METHODS: A patellar model with a transverse fracture and loads simulating patellar tendon forces applied on the patella were used in the present simulation. The surgical fixation consisted of two 4.0-mm parallel partially threaded cannulated screws with a figure-of-eight tension band made using a 1.25-mm stainless steel wire. Biomechanical responses at two screw proximities, 5 and 10 mm from the leading edge of the patella, were investigated. RESULTS: Superficial screw placement (5 mm) yielded higher stability, lower wire loads, and lower bone contact pressures than the deep placement (10 mm). The deep placement of screws exerted a higher load on the wire but a lower force on the screw than superficial placement did. CONCLUSION: This is the first numerical study to examine the effects of screw location on the fixation of a fractured patella using cannulated screws and tension band wiring. Considering the favorable biomechanical responses, superficial placement (5 mm below the leading edge of the patella) is recommended for screw insertion when treating a transverse fractured patella.


Subject(s)
Bone Screws , Bone Wires , Fracture Fixation, Internal/instrumentation , Fractures, Bone/surgery , Patella/injuries , Finite Element Analysis , Humans , Patellar Ligament , Range of Motion, Articular , Weight-Bearing
9.
Clin Implant Dent Relat Res ; 19(3): 447-457, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28078781

ABSTRACT

BACKGROUND: The study proposed a novel method for converting a radiographic guide into a surgical guide and evaluated its accuracy. MATERIALS AND METHODS: Radiographic guide was reformed with the addition of index rods for geometric conversion method (GCM). Planning implants were projected on geometric projection planes, and the implant positions were measured. The radiographic guide was converted into surgical guide using a generic bench drill machine with GCM data. Two experiments were designed to validate the GCM. (1) In vitro test: Twenty implants were placed on five edentulous dental models by using the GCM (group 1) and Stereolithography (SLA) method (group 2), respectively. The deviations of planned and placed implant were calculated, and the precision error (PE) value was calculated to evaluate the stability of the GCM and SLA. (2) In vivo test: Nine edentulous subjects were selected for clinical implant surgery with the GCM guide. Two level of the index rods of radiographic guides were prepared for surgical guides forming. The differences between the planned and actual implants were calculated in implant head, apex, and angulation. RESULTS: The in vitro test revealed no significant differences in the planned and placed angulations between groups 1 and 2 (P > .05). The PE was not significantly different between groups 1 and 2 (P > .05). The in vivo test revealed a successful treatment of the subjects, and 16 implant sites were evaluated. The results indicated that GCM guide could achieve the three-dimensional (3D) offset deviations of 1.03 ± 0.27 mm and 1.17 ± 0.24 mm at the implant head and apex, respectively, and 1.37° ± 0.21° for the 3D angulation. CONCLUSION: The novel method for converting a radiographic guide into a surgical guide appears accurate and stable compared with SLA.


Subject(s)
Dental Implantation, Endosseous/methods , Radiography, Dental/methods , Dental Implantation, Endosseous/instrumentation , Humans , Models, Dental , Stereolithography
10.
Int Orthop ; 41(7): 1471-1480, 2017 07.
Article in English | MEDLINE | ID: mdl-28120001

ABSTRACT

INTRODUCTION: Fracture impaction is a surgical technique used to support the fractured humerus with locking plate or intramedullary nail when treating proximal humeral fractures. However, few studies have investigated the mechanical difference between fracture impaction with locking plate and with intramedullary nail. The mechanism of fracture impaction to increase stability is still unclear. The aim of this study was to use numerical methods to compare the biomechanical effect of treating proximal humeral fracture. METHODS: Six different humerus models, including intact and fractured humeri with various fixation patterns were used in this study. Fracture impaction was simulated by moving the distal fragment of the humeral shift upwards directly until touching the inferior surface of the proximal fragment. We also considered both poor- and normal-quality bone in the simulation. RESULTS: Results confirmed that fracture impaction increases fracture stabilityand decreases peak stress in both implant and bone. Also, fracture impaction and plating with medial shift of the humeral shaft provides the highest stability. The metallic implant shared loading with the bone in the impacted models, while implants sustained all the loading alone in the nonimpacted models. CONCLUSIONS: Based on the results, the technique of fracture impaction is suggested for both nail and plate to reduce stresses on bone and implants and to increase structural stability. Furthermore, impaction with medial shift of the humeral shaft with plate is found to achieve the highest stability when treating proximal humeral fractures.


Subject(s)
Bone Nails/adverse effects , Bone Plates/adverse effects , Fracture Fixation, Intramedullary/methods , Shoulder Fractures/surgery , Biomechanical Phenomena , Computer Simulation , Fracture Fixation, Intramedullary/adverse effects , Humans
11.
Australas Phys Eng Sci Med ; 40(1): 115-126, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27914012

ABSTRACT

This study numerically investigated the deformation of titanium elastic nails prebent at various degrees during implantation into the intramedullary canal of fractured bones and the mechanism by which this prebending influenced the stability of the fractured bone. Three degrees of prebending the implanted portions of the nails were used: equal to, two times, and three times the diameter of the intramedullary canal. Furthermore, a simulated diaphyseal fracture with a 5-mm gap was created in the middle shaft portion of the bone fixed with two elastic nails in a double C-type configuration. End caps were simulated using a constraint equation. To confirm that the simulation process is able to present the mechanical response of the nail inside the intramedullary, an experiment was conducted by using sawbone for validation. The results indicated that increasing the degrees of nail prebending facilitated straightening the nails against the inner aspect of canal after implantation, with increase in stability under torsion. Furthermore, reducing nail prebending caused a larger portion of the nails to move closer to the loading site and center of bone after implantation; the use of end caps prevented the nail tips from collapsing and increased axial stability. End cap use was critical for preventing the nail tips from collapsing and for increasing the stability of the nails prebent at a degree equal to the diameter of the canal with insufficient frictional force between the nail and canal. Therefore, titanium elastic nail prebending in a double C-type configuration with a degree three times the diameter of the canal represents a superior solution for treating transverse fractures without a gap, whereas that with a degree equal to the diameter of the intramedullary canal and combined with end cap use represents an advanced solution for treating comminuted fractures in a diaphyseal long bone fracture.


Subject(s)
Diaphyses/physiopathology , Elasticity , Fractures, Bone/physiopathology , Fractures, Bone/therapy , Titanium/pharmacology , Biomechanical Phenomena/drug effects , Bone Nails , Computer Simulation , Diaphyses/drug effects , Humans , Models, Theoretical , Reproducibility of Results , Stress, Mechanical
12.
BMC Musculoskelet Disord ; 17(1): 496, 2016 12 09.
Article in English | MEDLINE | ID: mdl-27938365

ABSTRACT

BACKGROUND: Prolonged static sitting in a wheelchair is associated with an increased risk of lower back pain. The wheelchair seating system is a key factor of this risk because it affects spinal loading in the sitting position. In this study, 7 dynamic sitting strategies (DSSs) are examined: lumbar prominent dynamic sitting (LPDS), back reclined dynamic sitting (BRDS), femur upward dynamic sitting (FUDS), lumbar prominent with back reclined dynamic sitting (LBDS), lumbar prominent with femur upward dynamic sitting (LFDS), back reclined with femur upward dynamic sitting (BFDS), and lumbar prominent with back reclined with femur upward dynamic sitting (LBFDS). The objective of this study was to analyze the biomechanical effects of these sitting strategies on lumbar-pelvic angles. METHODS: Twenty able-bodied participants were recruited for the study. All participants performed LPDS, BRDS, FUDS, LBDS, LFDS, BFDS, and LBFDS in a random order. All lumbar-pelvic angle parameters, including the static lumbar angle, static pelvic angle, lumbar range of motion, and pelvic range of motion were measured and compared. RESULTS: Results show that LBDS and LBFDS enabled the most beneficial lumbar movements, although the difference between the 2 strategies was nonsignificant. BRDS and BFDS enabled the most beneficial pelvic movements, although the difference between the 2 strategies was nonsignificant. Among all the upright DSSs, LPDS and LFDS enabled the most beneficial lumbar and pelvic movements, although no significant difference was observed between these 2 strategies. CONCLUSIONS: We identified the effects and differences among 7 DSSs on lumbar-pelvic angles. Wheelchair users can choose the most suitable DSS that meets their needs. These findings may serve as a reference for practicing physicians or wheelchair users to choose an appropriate dynamic wheelchair seating system. TRIAL REGISTRATION: ISRCTN12389808 , 18th November 2016, retrospectively registered.


Subject(s)
Low Back Pain/prevention & control , Lumbosacral Region/anatomy & histology , Pelvic Bones/anatomy & histology , Posture , Wheelchairs/adverse effects , Adult , Biomechanical Phenomena , Female , Humans , Low Back Pain/etiology , Male , Range of Motion, Articular , Young Adult
13.
Injury ; 47(10): 2339-2346, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27424533

ABSTRACT

INTRODUCTION: Elastic stable intramedullary nailing (ESIN) is a treatment strategy for the management of diaphyseal long-bone fractures in adolescents and children, but few studies have investigated the mechanical stability of tibial diaphyseal fractures treated with various degrees of prebending of the elastic nails. Therefore, the aim of this study was to compare the mechanical stability, including the gap deformation and nail dropping, of a tibia fracture with various fracture sites and fixed with various degrees of prebending of the elastic nails by the finite element method. Furthermore, the contribution of end caps to stability was taken into consideration in the simulation. METHODS: A tibia model was developed with a transverse fracture at the proximal, middle and distal parts of the diaphysis, and fixed with three degrees of prebending of elastic nails, including those equal to, two times and three times the diameter of the intramedullary canal. The outer diameter of the nail used in the computation was 3.5mm, and the fractured tibia was fixed with two elastic double C-type nails. Furthermore, the proximal end of each nail was set to free or being tied to the surrounding bone by a constraint equation to simulate with or without using end caps. RESULTS: The results indicated that using end caps can prevent the fracture gap from collapsing by stopping the ends of the nails from dropping back in all prebending conditions and fracture patterns, and increasing the prebending of the nails to a degree three times the diameter of the canal reduced the gap shortening and the dropping distance of the nail end in those without using end caps under axial compression and bending. Insufficient prebending of the nails and not using end caps caused the gap to collapse and the nail to drop back at the entry point under loading. CONCLUSIONS: Using end caps or increasing the prebending of the nails to three times the diameter of the canal is suggested to stop the nail from dropping back and thus produce a more stable structure, with less gap deformation, in the management of a simulated tibial diapyhseal fracture by using titanium elastic nails with a double C-shape.


Subject(s)
Bone Nails , Computer Simulation , Diaphyses/anatomy & histology , Fracture Fixation, Intramedullary/methods , Fractures, Bone/surgery , Tibia/anatomy & histology , Biomechanical Phenomena , Diaphyses/surgery , Equipment Design , Fracture Fixation, Intramedullary/instrumentation , Humans , Models, Anatomic , Reproducibility of Results , Stress, Mechanical , Tibia/surgery , Titanium
14.
Comput Biol Med ; 71: 35-45, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26874064

ABSTRACT

This study investigated the biomechanical response of porous cages and lumbar spine segments immediately after surgery and after bone fusion, in addition to the long-term effects of various posterior lumbar interbody fusion (PLIF) techniques, by using the finite element method. Lumbar L3-L4 models based on three PLIF techniques (a single cage at the center of the intervertebral space, a single cage half-anterior to the intervertebral space, and two cages bilateral to the intervertebral space) with and without bone ingrowth were used to determine the biomechanical response of porous cages and lumbar segments instrumented with porous titanium cages (cage porosity=50%, pore diameter=1mm). The results indicated that bone fusion enhanced the stability of the lumbar segments with porous cages without any posterior instrumentation and reduced the peak von Mises stress in the cortical bones and porous cages. Two cages placed bilateral to the intervertebral space achieved the highest structural stability in the lumbar segment and lowest von Mises stress in the cages under both bone fusion conditions. Under identical loading (2-Nm), the range of motion in the single cage at the center of the intervertebral space with bone fusion decreased by 11% (from 1.18° to 1.05°) during flexion and by 66.5% (from 4.46° to 1.5°) during extension in the single cage half-anterior to the intervertebral space with bone fusion compared with no-fusion models. Thus, two porous titanium cages with 50% porosity can achieve high stability of a lumbar segment with PLIF. If only one cage is available, placing the cage half-anterior to the intervertebral space is recommended for managing degenerated lumbar segments.


Subject(s)
Computer Simulation , Lumbar Vertebrae , Models, Biological , Spinal Fusion , Titanium , Humans , Lumbar Vertebrae/pathology , Lumbar Vertebrae/physiopathology , Porosity
15.
Med Eng Phys ; 37(12): 1174-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26521645

ABSTRACT

The dynamic hip-screw (DHS) system is a common implant for fixation of proximal femur fractures. During assembly, it has been recommended to remove the compression screw after initial compression has been obtained; however, related complications had been reported. So far, the role of compression screw in the reconstructed stability of hip fractures as well as the mechanical strength of the DHS system has rarely been mentioned. This study investigated the function of this screw in the DHS system during fracture healing. Based on the FE method, six numerical models of proximal femur were employed to analyze the mechanical response of a DHS implant with various fracture types and different fixation strategies (with or without a compression screw). The displacement of the femur head and peak von Mises stress were selected as indices of the stability of a fractured femur stabilized by a DHS device and of the risk of implant failure, respectively. Our results showed that a retained compression screw increased reconstructed structural stiffness, reducing the displacement of the femur head. This screw also helped to lessen mechanical failure of side plate by reducing the peak von Mises stress around the connection between the barrel and side plate. Both findings were evident in the proximal femur fracture involving the intertrochanteric part, and even more obvious in the setting of bony defects. Thus, we recommend the maintenance of compression screw in the DHS system while treating the intertrochanteric fracture, particularly in cases with bony defects.


Subject(s)
Bone Screws , Finite Element Analysis , Mechanical Phenomena , Femoral Fractures/surgery , Hip/surgery , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...