Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 213: 108839, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38879986

ABSTRACT

Physio-biochemical regulations governing crop growth period are pivotal for drought adaptation. Yet, the extent to which functionality of arbuscular mycorrhizal fungi (AM fungi) varies across different stages of maize growth under drought conditions remains uncertain. Therefore, periodic functionality of two different AM fungi i.e., Rhizophagus irregularis SUN16 and Glomus monosporum WUM11 were assessed at jointing, silking, and pre-harvest stages of maize subjected to different soil moisture gradients i.e., well-watered (80% SMC (soil moisture contents)), moderate drought (60% SMC), and severe drought (40% SMC). The study found that AM fungi significantly (p < 0.05) affected various morpho-physiological and biochemical parameters at different growth stages of maize under drought. As the plants matured, AM fungi enhanced root colonization, glomalin contents, and microbial biomass, leading to increased nutrient uptake and antioxidant activity. This boosted AM fungal activity ultimately improved photosynthetic efficiency, evident in increased photosynthetic pigments and photosynthesis. Notably, R. irregularis and G. monosporum improved water use efficiency and mycorrhizal dependency at critical growth stages like silking and pre-harvest, indicating their potential for drought resilience to stabilize yield. The principal component analysis highlighted distinct plant responses to drought across growth stages and AM fungi, emphasizing the importance of early-stage sensitivity. These findings underscore the potential of incorporating AM fungi into agricultural management practices to enhance physiological and biochemical responses, ultimately improving drought tolerance and yield in dryland maize cultivation.


Subject(s)
Droughts , Mycorrhizae , Zea mays , Zea mays/microbiology , Zea mays/growth & development , Zea mays/metabolism , Mycorrhizae/physiology , Photosynthesis , Plant Roots/microbiology , Plant Roots/growth & development , Glomeromycota/physiology , Glomeromycota/growth & development , Water/metabolism , Biomass , Fungi
2.
Int J Vitam Nutr Res ; 84(5-6): 277-85, 2014.
Article in English | MEDLINE | ID: mdl-26255549

ABSTRACT

The organic forms of trace elements are considered more bioavailable than the inorganic forms. Although yeast can enrich metal elements and convert inorganic zinc to organic species, its tolerability and transforming capacity are limited. It would therefore be very interesting to look for higher conversion and accumulation in zinc fungi to obtain organic bound zinc from the natural environment. In this paper, potato dextrose agar (PDA) medium containing 800 µg/mL zinc was used for initial screening, with twenty-two fungal strains that tolerated high zinc isolated from the natural environment, and one strain (No.LZ-1108) growing well at a zinc (II) concentration of 10,000 µg/mL. According to morphological analysis, 18S rDNA sequence analysis, and biophysical and biochemical characteristics, No.LZ-1108 was tentatively identified as Fusarium oxysporum. Using atomic absorption spectrometry, the zinc content in the No.LZ-1108 cells was found to be 6.7 mg/g dry cell. After oral administration to rats at a dose of 10 mg Zn (II)/kg body weight, the area under the plasma concentration-time curve (AUC) and the maximum zinc blood concentration (Cmax) of No.LZ-1108 and zinc gluconate were 8.10 g/L.min and 4.28 g/L.min, 23.72 µg/mL and 6.23 µg/mL, respectively. The AUC of No.LZ-1108 was significantly higher than those of zinc gluconate (P<0.05), and the mean relative bioavailability of AUC(test)/AUC(zinc gluconate) was 190 %, which showed that the bound zinc in No.LZ-1108 was more bioavailable than zinc gluconate. The present study reports an interesting alternative to developing zinc-based supplements from a natural source of zinc.


Subject(s)
Fusarium/chemistry , Zinc/pharmacokinetics , Animals , Biological Availability , Biomass , Female , Hydrogen-Ion Concentration , Rats , Rats, Wistar , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...