Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Open Med (Wars) ; 18(1): 20230802, 2023.
Article in English | MEDLINE | ID: mdl-37808162

ABSTRACT

Can the spinal cord stimulation (SCS) regulate the autonomic nerves through the endothelin-1 (ET-1) and nerve growth factor (NGF)/p75NTR pathways and thus inhibit the occurrence of atrial fibrillation (AF)? In our research, 16 beagles were randomly divided into a rapid atrial pacing (RAP) group (n = 8) and a RAP + SCS group (n = 8), and the effective refractory period (ERP), ERP dispersion, AF induction rate, and AF vulnerability window (WOV) at baseline, 6 h of RAP, 6 h of RAP + SCS were measured. The atrial tissue was then taken for immunohistochemical analysis to determine the localization of ET-1, NGF, p75NTR, NF-kB p65, and other genes. Our results showed that SCS attenuated the shortening of ERP in all parts caused by RAP, and after 6 h of SCS, the probability of AF in dogs was reduced compared with that in the RAP group. Moreover, the expression of ET-1, NGF, and p75NTR in the atrial tissues of dogs in the RAP + SCS group was significantly increased, but the expression of NF-kB p65 was reduced. In conclusion, SCS promotes the positive remodeling of cardiac autonomic nerves by weakening NFκB p65-dependent pathways to interfere with the ET-1 and NGF/p75NTR pathways to resist the original negative remodeling and inhibit the occurrence of AF.

2.
Natl Sci Rev ; 10(10): nwad200, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37671320

ABSTRACT

Photosynthetic energy conversion for high-energy chemicals generation is one of the most viable solutions in the quest for sustainable energy towards carbon neutrality. Microalgae are fascinating photosynthetic organisms, which can directly convert solar energy into chemical energy and electrical energy. However, microalgal photosynthetic energy has not yet been applied on a large scale due to the limitation of their own characteristics. Researchers have been inspired to couple microalgae with synthetic materials via biomimetic assembly and the resulting microalgae-material hybrids have become more robust and even perform new functions. In the past decade, great progress has been made in microalgae-material hybrids, such as photosynthetic carbon dioxide fixation, photosynthetic hydrogen production, photoelectrochemical energy conversion and even biochemical energy conversion for biomedical therapy. The microalgae-material hybrid offers opportunities to promote artificially enhanced photosynthesis research and synchronously inspires investigation of biotic-abiotic interface manipulation. This review summarizes current construction methods of microalgae-material hybrids and highlights their implication in energy and health. Moreover, we discuss the current problems and future challenges for microalgae-material hybrids and the outlook for their development and applications. This review will provide inspiration for the rational design of the microalgae-based semi-natural biohybrid and further promote the disciplinary fusion of material science and biological science.

3.
IEEE Sens J ; 16(4): 1044-1053, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26880870

ABSTRACT

Medical ultrasound systems are capable of monitoring a variety of health conditions while avoiding invasive procedures. However this function is complicated by ultrasound contrast of the tissue varying with contact pressure exerted by the probe. The knowledge of the contact pressure is beneficial for a variety of screening and diagnostic procedures involving ultrasound. This paper introduces a solid-state sensor array which measures the contact pressure distribution between the probe and the tissue marginally affecting the ultrasound imaging capabilities. The probe design utilizes the dielectrostriction mechanism which relates the change in dielectric properties of the sensing layer to deformation. The concept, structure, fabrication, and performance of this sensor array are discussed. The prototype device is highly tolerant to overloads (>1 MPa tested) and provides stress measurements in the range of 0.14 to 10 kPa. Its loss of ultrasound transmissivity is less 3dB at 9 MHz ultrasound frequency. This performance is satisfactory for clinical and biomedical research in ultrasound image formation and interpretation, however for commercial product, a higher ultrasound transmissivity is desired. Directions for improving the sensor ultrasound transparency and electrical performance are discussed. The sensor array described in this paper has been developed specifically for ultrasound diagnosis during breast cancer screening. However, the same sensing mechanism, similar configuration and sensor array structure can be applied to other applications involving ultrasound tools for medical diagnostics.

4.
Biomacromolecules ; 14(10): 3557-69, 2013 Oct 14.
Article in English | MEDLINE | ID: mdl-24010580

ABSTRACT

A three-dimensional structure consisting of poly(ε-caprolactone) (PCL) nanofibers covered by periodically spaced PCL crystal lamellae, a self-induced nanohybrid shish-kebab (SINSK) structure, was created using electrospinning followed by a self-induced crystallization. The resulting structure that resembles the nanotopography of natural collagen nanofibrils in the extracellular matrix (ECM) of human tissues could serve as a tissue engineering scaffold. The formation mechanism of the self-induced shish-kebab structure was investigated with real-time observation of the crystallization process. Electrospun polylactic acid (PLA)/PCL nanofibers were also employed as shish elements to study the effects of different shish materials. The results show that the geometric dimensions of the shish-kebabs are highly related to the initial concentration of PCL solution. The shish material played an important role in the creation of shish-kebab structure. Cell assays with NIH 3T3 ECACC fibroblasts suggest that the nanotopography of the nanofiber surface with kebab crystals that mimic collagen fibrils facilitated the cell attachment and spreading of 3T3 fibroblasts cells.


Subject(s)
Fibrillar Collagens/chemistry , Molecular Mimicry , Nanofibers/chemistry , Polyesters/chemistry , Fibrillar Collagens/chemical synthesis , Humans , Particle Size , Polyesters/chemical synthesis , Surface Properties
5.
Mater Sci Eng C Mater Biol Appl ; 32(6): 1674-81, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-24364976

ABSTRACT

In this study, poly(ε-caprolactone) (PCL)/sodium chloride (NaCl), PCL/poly(ethylene oxide) (PEO)/NaCl and PCL/PEO/NaCl/hydroxyapatite (HA) composites were injection molded and characterized. The water soluble and sacrificial polymer, PEO, and NaCl particulates in the composites were leached by deionized water to produce porous and interconnected microstructures. The effect of leaching time on porosity, and residual contents of NaCl and NaCl/HA, as well as the effect of HA addition on mechanical properties was investigated. In addition, the biocompatibility was observed via seeding human mesenchymal stem cells (hMSCs) on PCL and PCL/HA scaffolds. The results showed that the leaching time depends on the spatial distribution of sacrificial PEO phase and NaCl particulates. The addition of HA has significantly improved the elastic (E') and loss moduli (E″) of PCL/HA scaffolds. Human MSCs were observed to have attached and proliferated on both PCL and PCL/HA scaffolds. Taken together, the molded PCL and PCL/HA scaffolds could be good candidates as tissue engineering scaffolds. Additionally, injection molding would be a potential and high throughput technology to fabricate tissue scaffolds.


Subject(s)
Biocompatible Materials/chemistry , Durapatite/chemistry , Polyesters/chemistry , Tissue Scaffolds/chemistry , Cells, Cultured , Humans , Materials Testing/methods , Mesenchymal Stem Cells/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Porosity , Sodium Chloride/chemistry , Tissue Engineering/methods , Water/chemistry
6.
Biorheology ; 48(3-4): 161-72, 2011.
Article in English | MEDLINE | ID: mdl-22156031

ABSTRACT

Piezoresistance describes the change of electrical resistance in a material undergoing deformation. Heterogeneous materials having different resistivities of dispersed and continuous matrix phases, such as blood (comprised of red and white blood cells and platelets suspended in plasma), can exhibit the piezoresistance effect. For an initially isotropic material, two independent intrinsic material coefficients, λ1 and λ2, would uniquely describe the piezoresistance phenomenon. Materials undergoing deformation affect a material's resistivity in two ways: (a) by introducing anisotropy in the material, which is characterized by λ1 and (b) by changing the volume density of the inclusions, which is associated with (1/3 λ1+λ2). In this paper, the piezoresistance effect in bovine blood samples is studied under oscillatory shear flow with a planar sensor rosette. The first piezoresistance coefficient, λ1, was measured at various frequencies and shear rates in the blood flow and compared with cos δ (equal to G'/G*, where G' and G* are the storage and complex moduli, respectively), which reflects the degree of elasticity. The coefficient λ1 was found to have a trend similar to that of cos δ under all conditions tested. Thus λ1 might potentially be used to characterize the viscoelastic properties of blood and the deformability of red blood cells, thus clarifying pathophysiology and facilitating diagnosis.


Subject(s)
Elasticity , Erythrocytes/chemistry , Viscosity , Animals , Biomechanical Phenomena , Blood Flow Velocity , Cattle , Electric Impedance , Erythrocyte Deformability , Rheology/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...