Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.004
Filter
1.
Opt Lett ; 49(11): 3114-3117, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824341

ABSTRACT

On-chip integrated metasurface driven by in-plane guided waves is of great interests in various light-field manipulation applications such as colorful augmented reality and holographic display. However, it remains a challenge to design colorful multichannel holography by a single on-chip metasurface. Here we present metasurfaces integrated on top of a guided-wave photonic slab that achieves multi-channel colorful holographic light display. An end-to-end scheme is used to inverse design the metasurface for projecting off-chip preset multiple patterns. Particular examples are presented for customized patterns that were encoded into the metasurface with a single-cell meta-atom, working simultaneously at RGB color channels and for several different diffractive distances, with polarization dependence. Holographic images are generated at 18 independent channels with such a single-cell metasurface. The proposed design scheme is easy to implement, and the resulting device is viable for fabrication, promising plenty of applications in nanophotonics.

2.
J Inflamm Res ; 17: 3433-3448, 2024.
Article in English | MEDLINE | ID: mdl-38828054

ABSTRACT

As one of the most prevalent chronic inflammatory skin diseases, atopic dermatitis (AD) increasingly affects the aging population. Amid the ongoing global aging trend, it's essential to recognize the intricate relationship between AD and aging. This paper reviews existing knowledge, summarizing clinical observations of associations between AD and aging-related diseases in various systems, including endocrine, cardiovascular, and neurological. Additionally, it discusses major theories explaining the correlation, encompassing skin-mucosal barriers, systemic inflammation and stress, genes, signal transduction, and environmental and behavioral factors. The association between AD and aging holds significant importance, both in population and basic perspectives. While further research is warranted, this paper aims to inspire deeper exploration of inflammation/allergy-aging dynamics and the timely management of elderly patients with AD.

3.
Mol Oral Microbiol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696249

ABSTRACT

BACKGROUND: Arg-gingipain A (RgpA) is the primary virulence factor of Porphyromonas gingivalis and contains hemagglutinin adhesin (HA), which helps bacteria adhere to cells and proteins. Hemagglutinin's functional domains include cleaved adhesin (CA), which acts as a hemagglutination and hemoglobin-binding actor. Here, we confirmed that the HA and CA genes are immunogenic, and using adjuvant chemokine to target dendritic cells (DCs) enhanced protective autoimmunity against P. gingivalis-induced periodontal disease. METHODS: C57 mice were immunized prophylactically with pVAX1-CA, pVAX1-HA, pVAX1, and phosphate-buffered saline (PBS) through intramuscular injection every 2 weeks for a total of three administrations before P. gingivalis-induced periodontitis. The DCs were analyzed using flow cytometry and ribonucleic acid sequencing (RNA-seq) transcriptomic assays following transfection with CA lentivirus. The efficacy of the co-delivered molecular adjuvant CA DNA vaccine was evaluated in vivo using flow cytometry, immunofluorescence techniques, and micro-computed tomography. RESULTS: After the immunization, both the pVAX1-CA and pVAX1-HA groups exhibited significantly elevated P. gingivalis-specific IgG and IgG1, as well as a reduction in bone loss around periodontitis-affected teeth, compared to the pVAX1 and PBS groups (p < 0.05). The expression of CA promoted the secretion of HLA, CD86, CD83, and DC-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) in DCs. Furthermore, the RNA-seq analysis revealed a significant increase in the chemokine (C-C motif) ligand 19 (p < 0.05). A notable elevation in the quantities of DCs co-labeled with CD11c and major histocompatibility complex class II, along with an increase in interferon-gamma (IFN-γ) cells, was observed in the inguinal lymph nodes of mice subjected to CCL19-CA immunization. This outcome effectively illustrated the preservation of peri-implant bone mass in rats afflicted with P. gingivalis-induced peri-implantitis (p < 0.05). CONCLUSIONS: The co-administration of a CCL19-conjugated CA DNA vaccine holds promise as an innovative and targeted immunization strategy against P. gingivalis-induced periodontitis and peri-implantitis.

4.
Ultrasonics ; 141: 107338, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38723293

ABSTRACT

Recently, the moiré pattern has attracted lots of attention by superimposing two planar structures of regular geometries, such as two sets of metasurfaces or gratings. Here, we show the experimental investigation of acoustic moiré effect by using twisted bilayer gratings (i.e., one grating twisted with respect to the other). We observed the guided resonance that occurred when the incident ultrasound beam was coupled with the guiding modes in a meta-grating, significantly influencing the reflection and transmission. Tunable guided resonances from the moiré effect with complete ultrasound reflection at different frequencies were further demonstrated in experiments. Combining the measurements of transmission spectra and the Fast Fourier Transform analyses, we reveal the guided resonance frequencies of moiré ultrasonic metasurface can be effectively controlled by adjusting the twisting angle of the bilayer gratings. Our results can be explained in a simplified model based on the band folding theory, providing a reliable prediction on the precise control of ultrasound reflection via the twisting angle adjustment. Our work extends the moiré metasurface from optics into acoustics, which shows more possibilities for the ultrasound beam engineering from the moiré effect and enables the exploration of functional acoustic devices for ultrasound imaging, treatment and diagnosis.

5.
Molecules ; 29(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38731653

ABSTRACT

In pursuit of enhancing the mechanical properties, especially the tensile strength, of 4D-printable consumables derived from waste cooking oil (WCO), we initiated the production of acrylate-modified WCO, which encompasses epoxy waste oil methacrylate (EWOMA) and epoxy waste oil acrylate (EWOA). Subsequently, a series of WCO-based 4D-printable photocurable resins were obtained by introducing a suitable diacrylate molecule as the second monomer, coupled with a composite photoinitiator system comprising Irgacure 819 and p-dimethylaminobenzaldehyde (DMAB). These materials were amenable to molding using an LCD light-curing 3D printer. Our findings underscored the pivotal role of triethylene glycol dimethacrylate (TEGDMA) among the array of diacrylate molecules in enhancing the mechanical properties of WCO-based 4D-printable resins. Notably, the 4D-printable material, composed of EWOA and TEGDMA in an equal mass ratio, exhibited nice mechanical strength comparable to that of mainstream petroleum-based 4D-printable materials, boasting a tensile strength of 9.17 MPa and an elongation at break of 15.39%. These figures significantly outperformed the mechanical characteristics of pure EWOA or TEGDMA resins. Furthermore, the EWOA-TEGDMA resin demonstrated impressive thermally induced shape memory performance, enabling deformation and recovery at room temperature and retaining its shape at -60 °C. This resin also demonstrated favorable biodegradability, with an 8.34% weight loss after 45 days of soil degradation. As a result, this 4D-printable photocurable resin derived from WCO holds immense potential for the creation of a wide spectrum of high-performance intelligent devices, brackets, mold, folding structures, and personalized products.

6.
ACS Omega ; 9(18): 19992-20002, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38737091

ABSTRACT

The technology of water plugging and increasing production in high water cut reservoirs of low permeability is a common problem in the industry. Epoxy resin, displaying excellent mechanical properties and adherent performance, can easily inject a tiny crack, forming a long-term blocking barrier. This study aimed to investigate an easily injectable degradable epoxy resin sealing material. The injectable performance, long-term stability, and mechanical and plugging properties were comparatively analyzed in the fractured core, and the degradable performance was discussed in the degrading solution. The result showed that the range of R (R is the ratio of EOG and MHHPA) from 1 to 1.1 and the mass fraction range of EMI from 0.01 to 4 wt % are the optimal formulations (EOGM). The curing time from 1 to 12 h could be regulated by adjusting the dosage of EMI, as well as the strength being more than 60 MPa. The plugging agent's initial viscosity is lower than 100 MPa s at 20 °C and injecting pressure is lower than 0.1 MPa. After curing for 24 h, compressive strength was more than 72.76 MPa, 3.6 times higher than that of cement, and the adhesion strength was 4.41 MPa when the contact area was 75.93 cm3. Breakthrough pressures for sealing 1-5 mm fractures were all more than 10 MPa, and the breakthrough pressure for 1 mm crack even reached 29.4 MPa. Epoxy resin/acid anhydride system could be degraded in a mixed solution of phenol-potassium salt-heavy aromatics within 7 days at 60-100 °C, which reduced the plugging well risk of the epoxy resin plugging agent. These results suggest that an epoxy resin/acid anhydride plugging agent can be employed effectively and safely for the injection of tiny cracks, which is of great engineering significance.

8.
Nanoscale ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38774976

ABSTRACT

One-dimensional (1D) Zn-based heterostructures have attracted considerable interest in the field of photodetection because of their tunable properties, flexibility, and unique optoelectronic properties. However, designing 1D multi-component Zn-based heterostructures for advanced photodetectors is still a great challenge. Herein, comb-like 1D-1D ZnO-ZnSe heterostructures with ZnO and ZnSe nanowires (NWs) comprising the shaft and teeth of a comb are reported. The length of the ZnO NWs can be modulated in the range of 300-1200 nm. Microstructural characterizations confirm that the 1D heterostructure clearly shows the spatial distribution of individual components. The well-designed structure displays an extended broadband photoresponse and higher photosensitivity than pure ZnSe NWs. Furthermore, ZnSe NWs with an appropriate length of ZnO branches show increased photoresponses of 3835% and 798% compared to those of pure ZnSe NWs under green and red-light irradiation, respectively. In addition, the integrated flexible photodetector presents excellent folding endurance after 1000 bending tests. This well-designed structure has significant potential for other 1D-based semiconductors in optoelectronic applications.

9.
Front Pharmacol ; 15: 1341854, 2024.
Article in English | MEDLINE | ID: mdl-38783935

ABSTRACT

Introduction: Aristolochic acid nephropathy (AAN) is a kidney injury syndrome caused by aristolochic acids exposure. Our study used label-free quantitative proteomics to delineate renal protein profiles and identify key proteins after exposure to different doses of aristolochic acid I (AAI). Methods: Male C57BL/6 mice received AAI (1.25 mg/kg/d, 2.5 mg/kg/d, or 5 mg/kg/d) or vehicle for 5 days. Results and discussion: The results showed that AAI induced dose-dependent nephrotoxicity. Differences in renal protein profiles between the control and AAI groups increased with AAI dose. Comparing the control with the low-, medium-, and high-dose AAI groups, we found 58, 210, and 271 differentially expressed proteins, respectively. Furthermore, protein-protein interaction network analysis identified acyl-CoA synthetase medium-chain family member 3 (Acsm3), cytochrome P450 family 2 subfamily E member 1 (Cyp2e1), microsomal glutathione S-transferase 1 (Mgst1), and fetuin B (Fetub) as the key proteins. Proteomics revealed that AAI decreased Acsm3 and Cyp2e1 while increasing Mgst1 and Fetub expression in mice kidneys, which was further confirmed by Western blotting. Collectively, in AAI-induced nephrotoxicity, renal protein profiles were dysregulated and exacerbated with increasing AAI dose. Acsm3, Cyp2e1, Mgst1, and Fetub may be the potential therapeutic targets for AAN.

10.
Respir Res ; 25(1): 214, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762509

ABSTRACT

OBJECTIVES: Obstructive sleep apnea (OSA) is associated with abnormal glucose and lipid metabolism. However, whether there is an independent association between Sleep Apnea-Specific Hypoxic Burden (SASHB) and glycolipid metabolism disorders in patients with OSA is unknown. METHODS: We enrolled 2,173 participants with suspected OSA from January 2019 to July 2023 in this study. Polysomnographic variables, biochemical indicators, and physical measurements were collected from each participant. Multiple linear regression analyses were used to evaluate independent associations between SASHB, AHI, CT90 and glucose as well as lipid profile. Furthermore, logistic regressions were used to determine the odds ratios (ORs) for abnormal glucose and lipid metabolism across various SASHB, AHI, CT90 quartiles. RESULTS: The SASHB was independently associated with fasting blood glucose (FBG) (ß = 0.058, P = 0.016), fasting insulin (FIN) (ß = 0.073, P < 0.001), homeostasis model assessment of insulin resistance (HOMA-IR) (ß = 0.058, P = 0.011), total cholesterol (TC) (ß = 0.100, P < 0.001), total triglycerides (TG) (ß = 0.063, P = 0.011), low-density lipoprotein cholesterol (LDL-C) (ß = 0.075, P = 0.003), apolipoprotein A-I (apoA-I) (ß = 0.051, P = 0.049), apolipoprotein B (apoB) (ß = 0.136, P < 0.001), apolipoprotein E (apoE) (ß = 0.088, P < 0.001) after adjustments for confounding factors. Furthermore, the ORs for hyperinsulinemia across the higher SASHB quartiles were 1.527, 1.545, and 2.024 respectively, compared with the lowest quartile (P < 0.001 for a linear trend); the ORs for hyper-total cholesterolemia across the higher SASHB quartiles were 1.762, 1.998, and 2.708, compared with the lowest quartile (P < 0.001 for a linear trend) and the ORs for hyper-LDL cholesterolemia across the higher SASHB quartiles were 1.663, 1.695, and 2.316, compared with the lowest quartile (P < 0.001 for a linear trend). Notably, the ORs for hyper-triglyceridemia{1.471, 1.773, 2.099} and abnormal HOMA-IR{1.510, 1.492, 1.937} maintained a consistent trend across the SASHB quartiles. CONCLUSIONS: We found SASHB was independently associated with hyperinsulinemia, abnormal HOMA-IR, hyper-total cholesterolemia, hyper-triglyceridemia and hyper-LDL cholesterolemia in Chinese Han population. Further prospective studies are needed to confirm that SASHB can be used as a predictor of abnormal glycolipid metabolism disorders in patients with OSA. TRIAL REGISTRATION: ChiCTR1900025714 { http://www.chictr.org.cn/ }; Prospectively registered on 6 September 2019; China.


Subject(s)
Hypoxia , Sleep Apnea, Obstructive , Humans , Male , Female , Cross-Sectional Studies , Middle Aged , Adult , Hypoxia/blood , Hypoxia/epidemiology , Sleep Apnea, Obstructive/epidemiology , Sleep Apnea, Obstructive/blood , Sleep Apnea, Obstructive/diagnosis , Blood Glucose/metabolism , Lipid Metabolism Disorders/epidemiology , Lipid Metabolism Disorders/blood , Lipid Metabolism Disorders/diagnosis , Aged , Polysomnography , Lipid Metabolism/physiology , Insulin Resistance/physiology
11.
ACS Appl Mater Interfaces ; 16(20): 26348-26359, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38728664

ABSTRACT

Organic solar cells (OSCs) could benefit from the ternary bulk heterojunction (BHJ), a method that allows for fine-tuning of light capture, cascade energy levels, and film shape, in order to increase their power conversion efficiency (PCE). In this work, the third components of PM6:Y6 and PM6:BTP-eC9 BHJs are a set of four star-shaped unfused ring electron acceptors (SSUFREAs), i.e., BD-IC, BFD-IC, BD-2FIC, and BFD-2FIC, that are facilely synthesized by direct C-H arylation. The four SSUFREAs all show complete complementary absorption with PM6, Y6, and BTP-eC9, which facilitates light harvesting and exciton collection. When BFD-2FIC is added as a third component, the PCEs of PM6:Y6 and PM6:BTP-eC9 binary BHJs are able to be improved from 15.31% to 16.85%, and from 16.23% to 17.23%, respectively, showing that BFD-2FIC is useful for most effective ternary OSCs in general, and increasing short circuit current (JSC) and better film morphology are two additional benefits. The ternary PM6:Y6:BFD-2FIC exhibits a 9.7% percentage of increase in PCE compared to the PM6:Y6 binary BHJ, which is one of the highest percentage increases among the reported ternary BHJs, showing the huge potential of BFD-2FIC for ternary BHJ OSCs.

12.
Chemistry ; : e202401377, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38738789

ABSTRACT

(Z)-alkenes are useful synthons but thermodynamically less stable than their (E)-isomers and typically more difficult to prepare. The synthesis of 1,4-hetero-bifunctionalized (Z)-alkenes is particularly challenging due to the inherent regio- and stereoselectivity issues. Herein we demonstrate a general, chemoselective and direct synthesis of (Z)-2-butene-1,4-diol monoesters. The protocol operates within a Pd-catalyzed decarboxylative acyloxylation regime involving vinyl ethylene carbonates (VECs) and various carboxylic acids as the reaction partners under mild and operationally attractive conditions. The newly developed process allows access to a structurally diverse pool of (Z)-2-butene-1,4-diol monoesters in good yields and with excellent regio- and stereoselectivity. Various synthetic transformations of the obtained (Z)-2-butene-1,4-diol monoesters demonstrate how these synthons are of great use to rapidly diversify the portfolio of these formal desymmetrized (Z)-alkenes.

13.
World J Gastroenterol ; 30(19): 2523-2537, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38817655

ABSTRACT

BACKGROUND: Autoimmune enteropathy (AIE) is a rare disease whose diagnosis and long-term prognosis remain challenging, especially for adult AIE patients. AIM: To improve overall understanding of this disease's diagnosis and prognosis. METHODS: We retrospectively analyzed the clinical, endoscopic and histopathological characteristics and prognoses of 16 adult AIE patients in our tertiary medical center between 2011 and 2023, whose diagnosis was based on the 2007 diagnostic criteria. RESULTS: Diarrhea in AIE patients was characterized by secretory diarrhea. The common endoscopic manifestations were edema, villous blunting and mucosal hyperemia in the duodenum and ileum. Villous blunting (100%), deep crypt lymphocytic infiltration (67%), apoptotic bodies (50%), and mild intraepithelial lymphocytosis (69%) were observed in the duodenal biopsies. Moreover, there were other remarkable abnormalities, including reduced or absent goblet cells (duodenum 94%, ileum 62%), reduced or absent Paneth cells (duodenum 94%, ileum 69%) and neutrophil infiltration (duodenum 100%, ileum 69%). Our patients also fulfilled the 2018 diagnostic criteria but did not match the 2022 diagnostic criteria due to undetectable anti-enterocyte antibodies. All patients received glucocorticoid therapy as the initial medication, of which 14/16 patients achieved a clinical response in 5 (IQR: 3-20) days. Immunosuppressants were administered to 9 patients with indications of steroid dependence (6/9), steroid refractory status (2/9), or intensified maintenance medication (1/9). During the median of 20.5 months of follow-up, 2 patients died from multiple organ failure, and 1 was diagnosed with non-Hodgkin's lymphoma. The cumulative relapse-free survival rates were 62.5%, 55.6% and 37.0% at 6 months, 12 months and 48 months, respectively. CONCLUSION: Certain histopathological findings, including a decrease or disappearance of goblet and Paneth cells in intestinal biopsies, might be potential diagnostic criteria for adult AIE. The long-term prognosis is still unsatisfactory despite corticosteroid and immunosuppressant medications, which highlights the need for early diagnosis and novel medications.


Subject(s)
Glucocorticoids , Humans , Female , Male , Retrospective Studies , Adult , Middle Aged , Prognosis , Biopsy , Glucocorticoids/therapeutic use , Polyendocrinopathies, Autoimmune/diagnosis , Polyendocrinopathies, Autoimmune/immunology , Polyendocrinopathies, Autoimmune/pathology , Polyendocrinopathies, Autoimmune/drug therapy , Polyendocrinopathies, Autoimmune/therapy , Ileum/pathology , Ileum/immunology , Duodenum/pathology , Duodenum/immunology , Diarrhea/etiology , Diarrhea/diagnosis , Diarrhea/immunology , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Immunosuppressive Agents/therapeutic use , Aged , Young Adult , Endoscopy, Gastrointestinal
14.
Bioorg Chem ; 147: 107420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38718461

ABSTRACT

Phytochemical analysis of Chloranthus henryi var. hupehensis roots led to the identification of a new eudesmane sesquiterpenoid dimer, 18 new sesquiterpenoids, and three known sesquiterpenoids. Among the isolates, 1 was a rare sesquiterpenoid dimer that is assembled by a unique oxygen bridge (C11-O-C8') of two highly rearranged eudesmane-type sesquiterpenes with the undescribed C16 carbon framework. (+)-2 and (-)-2 were a pair of new skeleton dinorsesquiterpenoids with a remarkable 6/6/5 tricyclic ring framework including one γ-lactone ring and the bicyclo[3.3.1]nonane core. Their structures were elucidated using spectroscopic data, single-crystal X-ray diffraction analysis, and quantum chemical computations. In the LPS-induced BV-2 microglial cell model, 17 suppressed IL-1ß and TNF-α expression with EC50 values of 6.81 and 2.76 µM, respectively, indicating its excellent efficacy in inhibiting inflammatory factors production in a dose dependent manner and without cytotoxicity. In subsequent mechanism studies, compounds 3, 16, and 17 could reduce IL-1ß and TNF-α production by inhibiting IKBα/p65 pathway activation.


Subject(s)
Dose-Response Relationship, Drug , Plant Roots , Sesquiterpenes , Signal Transduction , Sesquiterpenes/pharmacology , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification , Plant Roots/chemistry , Signal Transduction/drug effects , Molecular Structure , Mice , Animals , Structure-Activity Relationship , Transcription Factor RelA/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/isolation & purification , Lipopolysaccharides/antagonists & inhibitors , Lipopolysaccharides/pharmacology , Drug Discovery , NF-KappaB Inhibitor alpha/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/isolation & purification
15.
Cell Commun Signal ; 22(1): 269, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745240

ABSTRACT

BACKGROUND: The pathway involving PTEN-induced putative kinase 1 (PINK1) and PARKIN plays a crucial role in mitophagy, a process activated by artesunate (ART). We propose that patients with anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis exhibit insufficient mitophagy, and ART enhances mitophagy via the PINK1/PARKIN pathway, thereby providing neuroprotection. METHODS: Adult female mice aged 8-10 weeks were selected to create a passive transfer model of anti-NMDAR encephalitis. We conducted behavioral tests on these mice within a set timeframe. Techniques such as immunohistochemistry, immunofluorescence, and western blotting were employed to assess markers including PINK1, PARKIN, LC3B, p62, caspase3, and cleaved caspase3. The TUNEL assay was utilized to detect neuronal apoptosis, while transmission electron microscopy (TEM) was used to examine mitochondrial autophagosomes. Primary hippocampal neurons were cultured, treated, and then analyzed through immunofluorescence for mtDNA, mtROS, TMRM. RESULTS: In comparison to the control group, mitophagy levels in the experimental group were not significantly altered, yet there was a notable increase in apoptotic neurons. Furthermore, markers indicative of mitochondrial leakage and damage were found to be elevated in the experimental group compared to the control group, but these markers showed improvement following ART treatment. ART was effective in activating the PINK1/PARKIN pathway, enhancing mitophagy, and diminishing neuronal apoptosis. Behavioral assessments revealed that ART ameliorated symptoms in mice with anti-NMDAR encephalitis in the passive transfer model (PTM). The knockdown of PINK1 led to a reduction in mitophagy levels, and subsequent ART intervention did not alleviate symptoms in the anti-NMDAR encephalitis PTM mice, indicating that ART's therapeutic efficacy is mediated through the activation of the PINK1/PARKIN pathway. CONCLUSIONS: At the onset of anti-NMDAR encephalitis, mitochondrial damage is observed; however, this damage is mitigated by the activation of mitophagy via the PINK1/PARKIN pathway. This regulatory feedback mechanism facilitates the removal of damaged mitochondria, prevents neuronal apoptosis, and consequently safeguards neural tissue. ART activates the PINK1/PARKIN pathway to enhance mitophagy, thereby exerting neuroprotective effects and may achieve therapeutic goals in treating anti-NMDAR encephalitis.


Subject(s)
Anti-N-Methyl-D-Aspartate Receptor Encephalitis , Artesunate , Disease Models, Animal , Neuroprotective Agents , Protein Kinases , Animals , Artesunate/pharmacology , Artesunate/therapeutic use , Mice , Female , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/pathology , Anti-N-Methyl-D-Aspartate Receptor Encephalitis/drug therapy , Protein Kinases/metabolism , Neurons/drug effects , Neurons/pathology , Neurons/metabolism , Microscopy, Electron, Transmission , Mitophagy/drug effects , Apoptosis/drug effects , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Hippocampus/pathology , Hippocampus/drug effects , Hippocampus/metabolism
16.
J Agric Food Chem ; 72(19): 11221-11229, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38703356

ABSTRACT

Liposcelis bostrychophila, commonly known as booklouse, is an important stored-product pest worldwide. Studies have demonstrated that booklices have developed resistance to several insecticides. In this study, an integument esterase gene, LbEST-inte4, with upregulated expression, was characterized in L. bostrychophila. Knockdown of LbEST-inte4 resulted in a substantial increase in the booklice susceptibility to malathion. Overexpression of LbEST-inte4 in Drosophila melanogaster significantly enhanced its malathion tolerance. Molecular modeling and docking analysis suggested potential interactions between LbEST-inte4 and malathion. When overexpressed LbEST-inte4 in Sf9 cells, a notable elevation in esterase activity and malathion tolerance was observed. HPLC analysis indicated that the LbEST-inte4 enzyme could effectively degrade malathion. Taken together, the upregulated LbEST-inte4 appears to contribute to malathion tolerance in L. bostrychophila by facilitating the depletion of malathion. This study elucidates the molecular mechanism underlying malathion detoxification and provides the foundations for the development of effective prevention and control measures against psocids.


Subject(s)
Esterases , Insect Proteins , Insecta , Insecticides , Malathion , Animals , Drosophila melanogaster , Esterases/metabolism , Esterases/genetics , Esterases/chemistry , Inactivation, Metabolic , Insect Proteins/genetics , Insect Proteins/metabolism , Insect Proteins/chemistry , Insecta/drug effects , Insecticide Resistance/genetics , Insecticides/metabolism , Insecticides/chemistry , Insecticides/pharmacology , Malathion/metabolism , Malathion/chemistry , Malathion/toxicity , Malathion/pharmacology
17.
J Transl Med ; 22(1): 518, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816750

ABSTRACT

BACKGROUND: Dysbiosis of the gut microbiota is pivotal in Crohn's disease (CD) and modulated by host physiological conditions. Hyperbaric oxygen therapy (HBOT) is a promising treatment for CD that can regulate gut microbiota. The relationship between HBOT and the gut microbiota in CD remains unknown. METHODS: CD patients were divided into an HBOT group (n = 10) and a control group (n = 10) in this open-label prospective interventional study. The fecal samples before and after HBOT were used for 16 S rRNA gene sequencing and fecal microbiota transplantation (FMT). A colitis mouse model was constructed using dextran sulfate sodium, and intestinal and systematic inflammation was evaluated. The safety and long-term effect of HBOT were observed. RESULTS: HBOT significantly reduced the level of C-reactive protein (CRP) (80.79 ± 42.05 mg/L vs. 33.32 ± 18.31 mg/L, P = 0.004) and the Crohn's Disease Activity Index (CDAI) (274.87 ± 65.54 vs. 221.54 ± 41.89, P = 0.044). HBOT elevated the declined microbial diversity and ameliorated the altered composition of gut microbiota in patients with CD. The relative abundance of Escherichia decreased, and that of Bifidobacterium and Clostridium XIVa increased after HBOT. Mice receiving FMT from donors after HBOT had significantly less intestinal inflammation and serum CRP than the group before HBOT. HBOT was safe and well-tolerated by patients with CD. Combined with ustekinumab, more patients treated with HBOT achieved clinical response (30%vs.70%, P = 0.089) and remission (20%vs.50%, P = 0.160) at week 4. CONCLUSIONS: HBOT modulates the dysbiosis of gut microbiota in CD and ameliorates intestinal and systematic inflammation. HBOT is a safe option for CD and exhibits a promising auxiliary effect to ustekinumab. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2200061193. Registered 15 June 2022, https://www.chictr.org.cn/showproj.html?proj=171605 .


Subject(s)
Crohn Disease , Dysbiosis , Gastrointestinal Microbiome , Hyperbaric Oxygenation , Inflammation , Crohn Disease/therapy , Crohn Disease/microbiology , Humans , Dysbiosis/therapy , Dysbiosis/microbiology , Animals , Female , Male , Inflammation/therapy , Adult , Intestines/microbiology , Middle Aged , Fecal Microbiota Transplantation , Mice , Mice, Inbred C57BL , Young Adult
18.
Proc Natl Acad Sci U S A ; 121(23): e2403796121, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38809710

ABSTRACT

Olfactory receptors (Olfr) are G protein-coupled receptors that are normally expressed on olfactory sensory neurons to detect volatile chemicals or odorants. Interestingly, many Olfrs are also expressed in diverse tissues and function in cell-cell recognition, migration, and proliferation as well as immune responses and disease processes. Here, we showed that many Olfr genes were expressed in the mouse spleen, linked to Plasmodium yoelii genetic loci significantly, and/or had genome-wide patterns of LOD scores (GPLSs) similar to those of host Toll-like receptor genes. Expression of specific Olfr genes such as Olfr1386 in HEK293T cells significantly increased luciferase signals driven by IFN-ß and NF-κB promoters, with elevated levels of phosphorylated TBK1, IRF3, P38, and JNK. Mice without Olfr1386 were generated using the CRISPR/Cas9 method, and the Olfr1386-/- mice showed significantly lower IFN-α/ß levels and longer survival than wild-type (WT) littermates after infection with P. yoelii YM parasites. Inhibition of G protein signaling and P38 activity could affect cyclic AMP-responsive element promoter-driven luciferase signals and IFN-ß mRNA levels in HEK293T cells expressing the Olfr1386 gene, respectively. Screening of malaria parasite metabolites identified nicotinamide adenine dinucleotide (NAD) as a potential ligand for Olfr1386, and NAD could stimulate IFN-ß responses and phosphorylation of TBK1 and STAT1/2 in RAW264.7 cells. Additionally, parasite RNA (pRNA) could significantly increase Olfr1386 mRNA levels. This study links multiple Olfrs to host immune response pathways, identifies a candidate ligand for Olfr1386, and demonstrates the important roles of Olfr1386 in regulating type I interferon (IFN-I) responses during malaria parasite infections.


Subject(s)
Interferon Type I , Malaria , Plasmodium yoelii , Receptors, Odorant , Animals , Mice , Malaria/immunology , Malaria/parasitology , Malaria/metabolism , Humans , HEK293 Cells , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Interferon Type I/metabolism , Interferon Type I/immunology , Mice, Knockout , Signal Transduction , Mice, Inbred C57BL
19.
Prev Med ; 184: 107986, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714275

ABSTRACT

OBJECTIVE: Walking pace is associated with risks of major chronic diseases including cancer, cardiovascular disease (CVD) and diabetes mellitus type 2 (T2DM) in the general population. However, whether increasing walking pace could reduce risks of major chronic diseases in individuals with hypertension remains to be explored, and the underlying mechanism potentially mediated by low-grade inflammation is also unclear. METHODS: A total of 160,470 participants with hypertension were included based on the UK Biobank. The relationships of the walking pace and low-grade inflammation with risks of major chronic diseases in individuals with hypertension were assessed by the Cox proportional hazards model. Mediation analyses were performed to investigate the contribution of low-grade inflammation to the association between walking pace and risks of major chronic diseases. RESULTS: Individuals with hypertension at the brisk walking pace had decreased risks of overall cancer and site-specific cancers (liver, lung, and endometrial cancers), all CVD events (angina, atrial fibrillation, heart failure, myocardial infarction, peripheral vascular disease and stroke), and T2DM (hazard ratios: 0.42-0.91). Increasing low-grade inflammation was associated with higher risks of aforementioned diseases except liver cancer and atrial fibrillation. Furthermore, low-grade inflammation partially mediated associations of the walking pace with risks of lung cancer, T2DM, and all CVD events (except atrial fibrillation), with mediation proportion of 2.0%-9.8%. CONCLUSIONS: Brisk walking pace was linked to reduced risks of major chronic diseases in individuals with hypertension, partially mediated by low-grade inflammation. Improving walking pace may be beneficial for health in individuals with hypertension.


Subject(s)
Diabetes Mellitus, Type 2 , Hypertension , Inflammation , Neoplasms , Humans , Female , Male , Middle Aged , United Kingdom/epidemiology , Prospective Studies , Chronic Disease , Neoplasms/epidemiology , Diabetes Mellitus, Type 2/complications , Walking Speed , Biological Specimen Banks , Aged , Risk Factors , Cardiovascular Diseases/epidemiology , Proportional Hazards Models , Adult , UK Biobank
20.
Food Chem ; 452: 139562, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38749140

ABSTRACT

The growing global interest in physical and environmental health has led to the development of plant-based products. Although soy protein and wheat gluten are commonly utilized, concerns regarding gluten-related health issues have driven exploration into alternative proteins. Zein has emerged as a promising option. This research investigated the impact of extraction methods on zein characteristics and the structures of SPI-zein composite gels. Different extraction methods yielded zein with protein contents ranging from 48.12 % to 64.34 %. Ethanol-extracted Z1 and Z3, obtained at different pH conditions, exhibited zeta potential of -3.25 and 5.43 mV, respectively. They displayed similar characteristics to commercial zein and interacted comparably in composite gels. Conversely, alkaline-extracted Z2 had a zeta potential of -2.37 mV and formed distinct gels when combined with SPI. These results indicated that extraction methods influence zein behaviour in composite gels, offering possibilities for tailored formulations and expanding zein's applications, particularly in gluten-free plant-based products.


Subject(s)
Gels , Zein , Zein/chemistry , Gels/chemistry , Glutens/chemistry , Glutens/isolation & purification , Triticum/chemistry , Soybean Proteins/chemistry , Soybean Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...