Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.115
Filter
1.
Gland Surg ; 13(5): 684-696, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38845832

ABSTRACT

Background: Circulating tumor DNA (ctDNA) is a potential biomarker not only capable of monitoring the treatment response during neoadjuvant therapy (NAT) or rescue therapy, but also identifying minimal residual disease (MRD) and detecting early relapses after primary treatment. However, it remains uncertain whether the detection of ctDNA at diagnosis, before any treatment, can predict the prognosis for patients with early breast cancer. The objective of our study was to evaluate the predictive value of baseline ctDNA for prognosis in patients with early breast cancer. Methods: A total of 90 patients with early breast cancer and 24 healthy women were recruited between August 2016 and October 2016. Peripheral blood samples were collected from patients at diagnosis, before any treatment. Blood samples were processed and subjected to targeted deep sequencing with a next-generation sequencing (NGS) panel of 1,021 cancer-related genes. The recurrence-free survival (RFS) and invasive disease-free survival (iDFS) were reported. Results: The 90 patients with breast cancer included 6 patients with ductal carcinoma in situ (DCIS) and 84 patients with invasive breast cancer. Within the cohort of patients with invasive breast cancer, ctDNA were detected in 57 patients, with a ctDNA detection rate of 67.9%. Meanwhile, no ctDNA was detected in DCIS patients. Among 84 patients with invasive breast cancer, patients with high-level ctDNA had a significantly lower RFS compared to patients with low-level ctDNA (log-rank P=0.0036). Conclusions: Our study suggested that ctDNA at diagnosis, before any treatment, could potentially serve as a biomarker to predict the prognosis for patients with early breast cancer. However, further follow-up and more studies with large sample sizes are required to confirm these findings.

2.
Sci Rep ; 14(1): 12261, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806534

ABSTRACT

We accurately reconstruct the Local Field Potential time series obtained from anesthetized and awake rats, both before and during CO 2 euthanasia. We apply the Eigensystem Realization Algorithm to identify an underlying linear dynamical system capable of generating the observed data. Time series exhibiting more intricate dynamics typically lead to systems of higher dimensions, offering a means to assess the complexity of the brain throughout various phases of the experiment. Our results indicate that anesthetized brains possess complexity levels similar to awake brains before CO 2 administration. This resemblance undergoes significant changes following euthanization, as signals from the awake brain display a more resilient complexity profile, implying a state of heightened neuronal activity or a last fight response during the euthanasia process. In contrast, anesthetized brains seem to enter a more subdued state early on. Our data-driven techniques can likely be applied to a broader range of electrophysiological recording modalities.


Subject(s)
Algorithms , Brain , Animals , Brain/physiology , Rats , Wakefulness/physiology , Euthanasia , Male , Euthanasia, Animal/methods , Carbon Dioxide
3.
Inflammation ; 2024 May 18.
Article in English | MEDLINE | ID: mdl-38761249

ABSTRACT

Uveitis is an autoimmune eye disease that can be involved in the entire body and is one of the leading causes of blindness. Therefore, comprehending the mechanisms underlying the development and regulation of ocular immune responses in uveitis is crucial for designing effective therapeutic interventions. In this study, we investigated how RBPJ regulates macrophage polarization in uveitis. We demonstrated that targeted RBPJ knockdown (RBPJKD) promotes M2 macrophage polarization and ameliorates uveitis through the mtROS-mediated Notch1-Jagged1-Hes1 signaling pathway. Real-time quantitative (Q-PCR) analysis revealed that the Notch1-Jagged1-Hes1 signaling pathway was active in the eye tissues of experimental autoimmune uveitis (EAU) rats. Immunofluorescence double staining confirmed enhanced signaling primarily occurring in macrophages, establishing a correlation between the Notch1 signaling pathway and macrophages. Transmission electron microscopy evaluated the morphological and functional changes of mitochondria in each group's eye tissues. It demonstrated significant swelling and disorganization in the EAU group, which were effectively restored upon RBPJ knockdown intervention. Finally, by employing an antioxidant N-acetyl-L-cysteine (NAC) to eliminate mtROS in vivo, we observed a decrease in the M2 macrophage polarization level, which prevented the cytoprotective effect conferred by RBPJKD. These findings underscore the relevance of the Notch signaling pathway to the immune system while highlighting the potential role of mtROS as a therapeutic target for inflammation and other related diseases.

4.
Heliyon ; 10(9): e30275, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38756568

ABSTRACT

Organizational resilience is a key concept in the study of sustainable corporate growth and indicates an organization's capacity to recover from adversity. It plays a crucial role in responding to uncertain crises. In recent years, academic interest in organizational resilience has increasingly gained prominence. This research uses CiteSpace and VOSviewer to provide a thorough visual analysis of pertinent international literature based on 342 pieces of closely linked literature about organizational resilience. The findings suggest that organizational resilience research is currently experiencing a development phase. Within this field, there is a substantial number of scholars involved, with the most prolific among them including Aleksic Aleksandar, Prayag Girish, and Griffiths Andrew. The networks of collaboration among these authors, nevertheless, are very scattered. Co-citation network research reveals the academics with the biggest sway in the field. Organizational resilience, conservation of resources theory, crisis management, corporate social responsibility, and emergency management are identified as research hotspots within the keyword co-citation network. Furthermore, to determine which countries and regions are the most influential, this study has created a cooperative network among them. China, the United States, and England are the top three nations with articles published. Not only are the highly cited journals respected in the management sector, but they also showcase noteworthy research accomplishments within the field. The purpose of this study is to investigate potential avenues for future research and offer helpful sources for choosing research subjects and developing theoretical frameworks in this area. The analysis is highly valuable as a reference for research on organizational resilience in different settings in the future.

5.
Antiviral Res ; 227: 105917, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782067

ABSTRACT

The Fc-fused receptor binding domain (RBD-Fc) vaccine for SARS-CoV-2 has garnered significant attention for its capacity to provide effective and specific immune protection. However, its immunogenicity is limited, highlighting the need for improvement in clinical application. Nanoparticle delivery has been shown to be an effective method for enhancing antigen immunogenicity. In this study, we developed bivalent nanoparticle recombinant protein vaccines by assembling the RBD-Fc of SARS-CoV-2 and Fc-binding homo-oligomers o42.1 and i52.3 into octahedral and icosahedral nanoparticles. The formation of RBD-Fc nanoparticles was confirmed through structural characterization and cell binding experiments. Compared to RBD-Fc dimers, the nanoparticle vaccines induced more potent neutralizing antibodies (nAb) and stronger cellular immune responses. Therefore, using bivalent nanoparticle vaccines based on RBD-Fc presents a promising vaccination strategy against SARS-CoV-2 and offers a universal approach for enhancing the immunogenicity of Fc fusion protein vaccines.

6.
J Clin Sleep Med ; 20(4): 545-553, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38561941

ABSTRACT

STUDY OBJECTIVES: Previous studies have highlighted the importance of sleep patterns for human health. This study aimed to investigate the association of sleep timing with all-cause and cardiovascular disease mortality. METHODS: Participants were screened from two cohort studies: the Sleep Heart Health Study (SHHS; n = 4,824) and the Osteoporotic Fractures in Men Study (n = 2,658). Sleep timing, including bedtime and wake-up time, was obtained from sleep habit questionnaires at baseline. The sleep midpoint was defined as the halfway point between the bedtime and wake-up time. Restricted cubic splines and Cox proportional hazards regression analyses were used to examine the association between sleep timing and mortality. RESULTS: We observed a U-shaped association between bedtime and all-cause mortality in both the SHHS and Osteoporotic Fractures in Men Study groups. Specifically, bedtime at 11:00 pm and waking up at 7:00 am was the nadir for all-cause and cardiovascular disease mortality risks. Individuals with late bedtime (> 12:00 am) had an increased risk of all-cause mortality in SHHS (hazard ratio 1.53, 95% confidence interval 1.28-1.84) and Osteoporotic Fractures in Men Study (hazard ratio 1.27, 95% confidence interval 1.01-1.58). In the SHHS, late wake-up time (> 8:00 am) was associated with increased all-cause mortality (hazard ratio 1.39, 95% confidence interval 1.13-1.72). No significant association was found between wake-up time and cardiovascular disease mortality. Delaying sleep midpoint (> 4:00 am) was also significantly associated with all-cause mortality in the SHHS and Osteoporotic Fractures in Men Study. CONCLUSIONS: Sleep timing is associated with all-cause and cardiovascular disease mortality. Our findings highlight the importance of appropriate sleep timing in reducing mortality risk. CITATION: Ma M, Fan Y, Peng Y, et al. Association of sleep timing with all-cause and cardiovascular mortality: the Sleep Heart Health Study and the Osteoporotic Fractures in Men Study. J Clin Sleep Med. 2024;20(4):545-553.


Subject(s)
Cardiovascular Diseases , Osteoporotic Fractures , Male , Humans , Cardiovascular Diseases/complications , Sleep , Polysomnography , Cohort Studies
7.
RSC Adv ; 14(19): 12966-12976, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38655476

ABSTRACT

Surface coating technology is broadly demanded across various fields, including marine and biomedical materials; therefore, a facile and versatile approach is desired. This study proposed an attractive surface coating strategy using photo-crosslinkable benzophenone (BP) moiety for biomaterials application. BP-containing "bioglue" polymer can effectively crosslink with all kinds of surfaces and biomolecules. Upon exposure to ultraviolet (UV) light, free radical reaction from the BP glue facilitates the immobilization of diverse molecules onto different substrates in a straightforward and user-friendly manner. Through either one-step, mixing the bioglue with targeted biomolecules, or two-step methods, pre-coating the bioglue and then adding targeted biomolecules, polyacrylic acid (PAA), cyclic RGD-containing peptides, and proteins (gelatin, collagen, and fibronectin) were successfully immobilized on substrates. After drying the bioglue, targeted biomolecules can still be immobilized on the surfaces preserving their bioactivity. Cell culture on biomolecule-immobilized surfaces using NIH 3T3 fibroblasts and human bone marrow stem cells (hBMSCs) showed significant improvement of cell adhesion and activity compared to the unmodified control in serum-free media after 24 hours. Furthermore, hBMSCs on the fibronectin-immobilized surface showed an increased calcium deposition after 21 days of osteogenic differentiation, suggesting that the immobilized fibronectin is highly bioactive. Given the straightforward protocol and substrate-independent bioglue, the proposed coating strategy is promising in broad-range fields.

8.
Front Genet ; 15: 1385339, 2024.
Article in English | MEDLINE | ID: mdl-38660673

ABSTRACT

Introduction: Vitiligo, a common autoimmune acquired pigmentary skin disorder, poses challenges due to its unclear pathogenesis. Evidence suggests inflammation and metabolism's pivotal roles in its onset and progression. This study aims to elucidate the causal relationships between vitiligo and inflammatory proteins, immune cells, and metabolites, exploring bidirectional associations and potential drug targets. Methods: Mendelian Randomization (MR) analysis encompassed 4,907 plasma proteins, 91 inflammatory proteins, 731 immune cell features, and 1400 metabolites. Bioinformatics analysis included Protein-Protein Interaction (PPI) network construction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Subnetwork discovery and hub protein identification utilized the Molecular Complex Detection (MCODE) plugin. Colocalization analysis and drug target exploration, including molecular docking validation, were performed. Results: MR analysis identified 49 proteins, 39 immune cell features, and 59 metabolites causally related to vitiligo. Bioinformatics analysis revealed significant involvement in PPI, GO enrichment, and KEGG pathways. Subnetwork analysis identified six central proteins, with Interferon Regulatory Factor 3 (IRF3) exhibiting strong colocalization evidence. Molecular docking validated Piceatannol's binding to IRF3, indicating a stable interaction. Conclusion: This study comprehensively elucidates inflammation, immune response, and metabolism's intricate involvement in vitiligo pathogenesis. Identified proteins and pathways offer potential therapeutic targets, with IRF3 emerging as a promising candidate. These findings deepen our understanding of vitiligo's etiology, informing future research and drug development endeavors.

9.
Clin Transl Med ; 14(4): e1656, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38664597

ABSTRACT

BACKGROUND: Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY: The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION: Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS: The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.


Subject(s)
Immunotherapy , Neoplasms , Organoids , Humans , Organoids/drug effects , Immunotherapy/methods , Neoplasms/therapy , Neoplasms/drug therapy , Neoplasms/immunology , Precision Medicine/methods , Avatar
10.
Biomedicines ; 12(4)2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38672134

ABSTRACT

Fibromyalgia is a chronic, widespread pain disorder that is strongly represented across the affective and cognitive dimensions of pain, given that the underlying pathophysiology of the disorder is yet to be identified. These affective and cognitive deficits are crucial to understanding and treating the fibromyalgia pain experience as a whole but replicating this multidimensionality on a preclinical level is challenging. To understand the underlying mechanisms, animal models are used. In this scoping review, we evaluate the current primary animal models of fibromyalgia regarding their translational relevance within the affective and cognitive pain realms, as well as summarize treatments that have been identified preclinically for attenuating these deficits.

11.
J Adv Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38609049

ABSTRACT

INTRODUCTION: Helicobacter pylori (H. pylori) infection has been associated with gastric carcinogenesis. However, the precise involvement of LRP8, the low-density lipoprotein receptor-related protein 8, in H. pylori pathogenesis and gastric cancer (GC) remains poorly understood. OBJECTIVES: To investigate the potential role of LRP8 in H. pylori infection and gastric carcinogenesis. METHODS: Three-dimensional human-derived gastric organoids (hGO) and gastric cancer organoids (hGCO) were synthesized from the tissues obtained from human donors. In this work, multi-omics combined with in vivo and in vitro studies were conducted to investigate the potential involvement of LRP8 in H. pylori-induced GC. RESULTS: We found that H. pylori infection significantly upregulated the expression of LRP8 in human GC tissues, cells, organoids, and mouse gastric mucous. In particular, LRP8 exhibited a distinct enrichment in cancer stem cells (CSC). Functionally, silencing of LRP8 affected the formation and proliferation of tumor spheroids, while increased expression of LRP8 was associated with increased proliferation and stemness of GC cells and organoids. Mechanistically, LRP8 promotes the binding of E-cadherin to ß-catenin, thereby promoting nuclear translocation and transcriptional activity of ß-catenin. Furthermore, LRP8 interacts with the cytotoxin-associated gene A (CagA) to form the CagA/LRP8/ß-catenin complex. This complex further amplifies H. pylori-induced ß-catenin nuclear translocation, leading to increased transcription of inflammatory factors and CSC markers. Clinical analysis demonstrated that abnormal overexpression of LRP8 is correlated with a poor prognosis and resistance to 5-Fluorouracil in patients with GC. CONCLUSION: Our findings provide valuable information on the molecular intricacies of H. pylori-induced gastric carcinogenesis, offering potential therapeutic targets and prognostic markers for GC.

12.
Front Immunol ; 15: 1381340, 2024.
Article in English | MEDLINE | ID: mdl-38633246

ABSTRACT

Background: In addition to abnormal liver inflammation, the main symptoms of non-alcoholic steatohepatitis (NASH) are often accompanied by gastrointestinal digestive dysfunction, consistent with the concept of spleen deficiency (SD) in traditional Chinese medicine. As an important metabolic sensor, whether peroxisome proliferator-activated receptor alpha (PPARα) participates in regulating the occurrence and development of NASH with SD (NASH-SD) remains to be explored. Methods: Clinical liver samples were collected for RNA-seq analysis. C57BL/6J mice induced by folium sennae (SE) were used as an SD model. qPCR analysis was conducted to evaluate the inflammation and metabolic levels of mice. PPARα knockout mice (PPARαko) were subjected to SE and methionine-choline-deficient (MCD) diet to establish the NASH-SD model. The phenotype of NASH and the inflammatory indicators were measured using histopathologic analysis and qPCR as well. Results: The abnormal expression of PPARα signaling, coupled with metabolism and inflammation, was found in the results of RNA-seq analysis from clinical samples. SD mice showed a more severe inflammatory response in the liver evidenced by the increases in macrophage biomarkers, inflammatory factors, and fibrotic indicators in the liver. qPCR results also showed differences in PPARα between SD mice and control mice. In PPARαko mice, further evidence was found that the lack of PPARα exacerbated the inflammatory response phenotype as well as the lipid metabolism disorder in NASH-SD mice. Conclusion: The abnormal NR signaling accelerated the vicious cycle between lipotoxicity and inflammatory response in NAFLD with SD. Our results provide new evidence for nuclear receptors as potential therapeutic targets for NAFLD with spleen deficiency.


Subject(s)
Non-alcoholic Fatty Liver Disease , PPAR alpha , Animals , Mice , Inflammation , Mice, Inbred C57BL , Mice, Knockout , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , PPAR alpha/metabolism , Spleen/metabolism , Spleen/pathology
13.
Transl Cancer Res ; 13(2): 515-524, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38482451

ABSTRACT

Background: Conjunctival melanoma (CM) is a rare, invasive tumor in the eye that readily metastasizes and spreads. Based on some significant clinicopathological information, we aimed to develop a prognostic model to predict the overall survival (OS) of CM patients. Methods: Data of patients diagnosed with CM from 2000 to 2019 were identified from the Surveillance, Epidemiology, and End Results (SEER) database. Significant prognostic factors were extracted and integrated based on competing risk regression to build a nomogram. Harrell's concordance index (C-index), receiver operating characteristic (ROC) curve, and calibration plots were used to evaluate the performance of the nomogram. Results: The study included 272 patients with CM, with a median age of 63 years. A nomogram was developed using age and tumor-node-metastasis (TNM) stage as variables. The model's C-index was 0.755, and the area under the curve (AUC) was 0.774, 0.812, and 0.815 at 5, 8, and 10 years, respectively. The calibration plot used to predict CM demonstrated good consistency between the predicted OS probability and the actual OS probability. Conclusions: We have developed a nomogram model to predict the OS of patients with CM, which can predict the survival of these patients. The model's prognostic value is higher than that of the American Joint Committee on Cancer (AJCC) staging system alone. This tool can help evaluate the tumor-specific prognosis, identify patients at high risk of cancer-specific death, and guide clinical decision-making.

14.
ISME Commun ; 4(1): ycae013, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38495633

ABSTRACT

Dead-corner areas in space station that untouched by the clean-up campaign often experience microorganisms outbreaks, but the microbiome of these areas has never been studied. In this study, the microbiome in a ground-based analog ``Tianhe'' core module of China Space Station was first investigated during a 50-day three-crew occupation. Dead-corner areas were receiving attention by adopting a new sampling method. Results indicate that the astronauts occupation did not affect the dominant bacteria community, but affected a small proportion. Due to the frequent activity of astronauts in the work and sleep areas, the biomarkers in these two areas are common human skin surface and gut microorganisms, respectively. For areas that astronaut rarely visits, the biomarkers in which are common environmental microbial groups. Fluorescence counting showed that 70.12-84.78% of bacteria were alive, with a quantity of 104-105 cells/100 cm2. With the occupation time extension, the number of microorganisms increased. At the same sampling time, there was no significant bioburden difference in various locations. The cultivable bioburden ranged from 101 to 104 colony forming unit (CFU)/100 cm2, which are the following eight genera Penicillium, Microsphaeropsis, Stachybotrys, Humicola, Cladosporium, Bacillus, Planomicrobium, and Acinetobacter. Chryseomicrobium genus may be a key focus for future microbial prevention and control work.

15.
J Nanobiotechnology ; 22(1): 126, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38519957

ABSTRACT

The successful reprogramming of impaired wound healing presents ongoing challenges due to the impaired tissue microenvironment caused by severe bacterial infection, excessive oxidative stress, as well as the inappropriate dosage timing during different stages of the healing process. Herein, a dual-layer hydrogel with sodium alginate (SA)-loaded zinc oxide (ZnO) nanoparticles and poly(N-isopropylacrylamide) (PNIPAM)-loaded Cu5.4O ultrasmall nanozymes (named programmed time-released multifunctional hydrogel, PTMH) was designed to dynamically regulate the wound inflammatory microenvironment based on different phases of wound repairing. PTMH combated bacteria at the early phase of infection by generating reactive oxygen species through ZnO under visible-light irradiation with gradual degradation of the lower layer. Subsequently, when the upper layer was in direct contact with the wound tissue, Cu5.4O ultrasmall nanozymes were released to scavenge excessive reactive oxygen species. This neutralized a range of inflammatory factors and facilitated the transition from the inflammatory phase to the proliferative phase. Furthermore, the utilization of Cu5.4O ultrasmall nanozymes enhanced angiogenesis, thereby facilitating the delivery of oxygen and nutrients to the impaired tissue. Our experimental findings indicate that PTMHs promote the healing process of diabetic wounds with bacterial infection in mice, exhibiting notable antibacterial and anti-inflammatory properties over a specific period of time.


Subject(s)
Bacterial Infections , Zinc Oxide , Animals , Mice , Hydrogels/pharmacology , Reactive Oxygen Species , Zinc Oxide/pharmacology , Anti-Inflammatory Agents , Anti-Bacterial Agents/pharmacology
16.
J Nanobiotechnology ; 22(1): 129, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38528554

ABSTRACT

The development of nanomaterials for delivering natural compounds has emerged as a promising approach for atherosclerosis therapy. However, premature drug release remains a challenge. Here, we present a ROS-responsive biomimetic nanocomplex co-loaded with Geniposide (GP) and Emodin (EM) in nanoliposome particles (LP NPs) for targeted atherosclerosis therapy. The nanocomplex, hybridized with the macrophage membrane (Møm), effectively evades immune system clearance and targets atherosclerotic plaques. A modified thioketal (TK) system responds to ROS-rich plaque regions, triggering controlled drug release. In vitro, the nanocomplex inhibits endothelial cell apoptosis and macrophage lipid accumulation, restores endothelial cell function, and promotes cholesterol effluxion. In vivo, it targets ROS-rich atherosclerotic plaques, reducing plaque area ROS levels and restoring endothelial cell function, consequently promoting cholesterol outflow. Our study demonstrates that ROS-responsive biomimetic nanocomplexes co-delivering GP and EM exert a synergistic effect against endothelial cell apoptosis and lipid deposition in macrophages, offering a promising dual-cell therapy modality for atherosclerosis regression.


Subject(s)
Atherosclerosis , Emodin , Iridoids , Plaque, Atherosclerotic , Humans , Plaque, Atherosclerotic/drug therapy , Liposomes/therapeutic use , Reactive Oxygen Species/metabolism , Emodin/pharmacology , Emodin/therapeutic use , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Cholesterol
17.
Hum Immunol ; 85(3): 110775, 2024 May.
Article in English | MEDLINE | ID: mdl-38493049

ABSTRACT

OBJECTIVE: Natural killer cells (NK) acts a central player of the immune system in liver cirrhosis. The aim of this study was to examine the expression of activating intra-hepatic NK cell group 2D (NKG2D) in patients with chronic hepatitis B (CHB) and analyzed the correlation between NKG2D expression and prognosis of liver cirrhosis in these patients. METHODS: This was a cross-section study. Subjects with liver biopsy or sponge hemangioma surgery were included. The primary outcome was the NKG2D expression on intra-hepatic NK cells and their subtype cells in patients with CHB-related liver cirrhosis. Subsequently, the correlation of expression of NKG2D and clinical characteristic indicators were assayed RESULTS: Among 38 subjects, 11 (28.95%) normal liver sections adjacent the sponge hemangioma (healthy group) were collected during surgery, and 27 (71.05%) CHB-cirrhosis tissues (Cirrhosis group) were preserved after liver biopsy. Compared with healthy group, sections from cirrhosis group revealed more severe inflammation and collagen deposition and lower NKG2D expression in hepatic NK cells. The proportion of hepatic NK cells and the mean fluorescence intensity (MFI) of NKG2D on hepatic NK cells showed a positive correlation with serum albumin (Alb) level, platelet (Plt) count. Moreover, they had a significantly negative correlation with patient prothrombin time (PT), international standardized ratio (INR), the sirius red positive stained area and fibrosis stages. CONCLUSIONS: Lower NKG2D expression in intra-hepatic NK cells may be predictive of poorer prognosis of CHB patients with cirrhosis.


Subject(s)
Hepatitis B, Chronic , Killer Cells, Natural , Liver Cirrhosis , Liver , NK Cell Lectin-Like Receptor Subfamily K , Humans , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/complications , Liver Cirrhosis/immunology , Liver Cirrhosis/diagnosis , Liver Cirrhosis/pathology , Female , Male , Prognosis , Middle Aged , Adult , Liver/pathology , Liver/immunology , Liver/metabolism , Cross-Sectional Studies , Biopsy , Hepatitis B virus/immunology
18.
Ren Fail ; 46(1): 2313171, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38345000

ABSTRACT

Acute kidney injury (AKI) is a prevalent and serious condition in the intensive care unit (ICU), associated with significant morbidity and mortality. Septic acute kidney injury (SAKI) contributes substantially to AKI cases in the ICU. However, current diagnostic methods have limitations, necessitating the exploration of novel biomarkers. In this study, we investigated the potential of plasma and urine CCL2 levels as diagnostic markers for AKI and SAKI in 216 ICU patients. Our findings revealed significant differences in plasma (p < 0.01) and urine CCL2 (p < 0.0001) levels between AKI and non-AKI patients in the ICU. Notably, urine CCL2 demonstrated promising predictive value for AKI, exhibiting high specificity and sensitivity (AUC = 0.8976; p < 0.0001). Furthermore, we observed higher urine CCL2 levels in SAKI compared to non-septic AKI (p < 0.001) and urine CCL2 could also differentiate SAKI from non-septic AKI (AUC = 0.7597; p < 0.0001). These results suggest that urine CCL2 levels hold promise as early biomarkers for AKI and SAKI, offering valuable insights for timely intervention and improved management of ICU patients.


Subject(s)
Acute Kidney Injury , Sepsis , Humans , Sepsis/diagnosis , Sepsis/complications , Biomarkers , Critical Care , Intensive Care Units , Chemokine CCL2
19.
Heliyon ; 10(3): e24619, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38317884

ABSTRACT

Naringin is a natural flavonoid with therapeutic properties found in citrus fruits and an active natural product from herbal plants. Naringin has become a focus of attention in recent years because of its ability to actively participate in the body's immune response and maintain the integrity of the immune barrier. This review aims to elucidate the mechanism of action and therapeutic efficacy of naringin in various inflammatory diseases and to provide a valuable reference for further research in this field. The review provided the chemical structure, bioavailability, pharmacological properties, and pharmacokinetics of naringin and found that naringin has good therapeutic potential for inflammatory diseases, exerting anti-inflammatory, anti-apoptotic, anti-oxidative stress, anti-ulcerative and detoxifying effects in the disease. Moreover, we found that the great advantage of naringin treatment is that it is safe and can even alleviate the toxic side effects associated with some of the other drugs, which may become a highlight of naringin research. Naringin, an active natural product, plays a significant role in systemic diseases' anti-inflammatory and antioxidant regulation through various signaling pathways and molecular mechanisms.

20.
Biofabrication ; 16(2)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38306665

ABSTRACT

The tumor microenvironment (TME) is critical for tumor growth and metastasis. The TME contains cancer-associated cells, tumor matrix, and tumor secretory factors. The fabrication of artificial tumors, so-called tumoroids, is of great significance for the understanding of tumorigenesis and clinical cancer therapy. The assembly of multiple tumor cells and matrix components through interdisciplinary techniques is necessary for the preparation of various tumoroids. This article discusses current methods for constructing tumoroids (tumor tissue slices and tumor cell co-culture) for pre-clinical use. This article focuses on the artificial matrix materials (natural and synthetic materials) and biofabrication techniques (cell assembly, bioengineered tools, bioprinting, and microfluidic devices) used in tumoroids. This article also points out the shortcomings of current tumoroids and potential solutions. This article aims to promotes the next-generation tumoroids and the potential of them in basic research and clinical application.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Coculture Techniques , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...