Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Cancer Res ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38718296

ABSTRACT

Circadian clock perturbation frequently occurs in cancer and facilitates tumor progression by regulating malignant growth and shaping the immune microenvironment. Emerging evidence has indicated that clock genes are disrupted in melanoma and linked to immune escape. Here, we found that the expression of retinoic acid receptor-related orphan receptor-α (RORA) is downregulated in melanoma patients and that patients with higher RORA expression have a better prognosis after immunotherapy. Additionally, RORA was significantly positively correlated with T-cell infiltration and recruitment. Overexpression or activation of RORA stimulated cytotoxic T-cell-mediated antitumor responses. RORA bound to the CD274 promoter and formed an inhibitory complex with HDAC3 to suppress PD-L1 expression. In contrast, the DEAD-box helicase family member DDX3X competed with HDAC3 for binding to RORA, and DDX3X overexpression promoted RORA release from the suppressive complex and thereby increased PD-L1 expression to generate an inhibitory immune environment. The combination of a RORA agonist with an anti-CTLA4 antibody synergistically increased T-cell antitumor immunity in vivo. A score based on the combined expression of HDAC3, DDX3X and RORA correlated with immunotherapy response in melanoma patients. Together, this study elucidates a mechanism of clock component-regulated antitumor immunity, which will help inform the use of immunotherapy and lead to improved outcomes for melanoma patients receiving combined therapeutic treatments.

2.
PLoS Genet ; 19(12): e1011084, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38157491

ABSTRACT

mDia formin proteins regulate the dynamics and organization of the cytoskeleton through their linear actin nucleation and polymerization activities. We previously showed that mDia1 deficiency leads to aberrant innate immune activation and induces myelodysplasia in a mouse model, and mDia2 regulates enucleation and cytokinesis of erythroblasts and the engraftment of hematopoietic stem and progenitor cells (HSPCs). However, whether and how mDia formins interplay and regulate hematopoiesis under physiological and stress conditions remains unknown. Here, we found that both mDia1 and mDia2 are required for HSPC regeneration under stress, such as serial plating, aging, and reconstitution after myeloid ablation. We showed that mDia1 and mDia2 form hetero-oligomers through the interactions between mDia1 GBD-DID and mDia2 DAD domains. Double knockout of mDia1 and mDia2 in hematopoietic cells synergistically impaired the filamentous actin network and serum response factor-involved transcriptional signaling, which led to declined HSPCs, severe anemia, and significant mortality in neonates and newborn mice. Our data demonstrate the potential roles of mDia hetero-oligomerization and their non-rodent functions in the regulation of HSPCs activity and orchestration of hematopoiesis.


Subject(s)
Actins , Carrier Proteins , Mice , Animals , Formins/genetics , Formins/metabolism , Actins/genetics , Actins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Actin Cytoskeleton/metabolism , Microtubules/metabolism
3.
Br J Haematol ; 201(5): 982-994, 2023 06.
Article in English | MEDLINE | ID: mdl-36872867

ABSTRACT

Beta-thalassaemia is an inherited haemoglobin disorder characterised by ineffective erythropoiesis (IE). The detailed pathogenesis of IE remains unclear. In this study, we used single-cell RNA sequencing (scRNA-seq) to examine IE in Th3/+ ß-thalassaemic mice. The results showed that the erythroid group was remarkably expanded, and genes involved in biological processes such as iron metabolism, haeme synthesis, protein folding, and response to heat were significantly upregulated from erythroid progenitors to reticulocytes in ß-thalassaemic mice. In particular, we identified a unique cell population close to reticulocytes, named ThReticulocytes, characterised by a high level of heat shock protein 70 (Hsp70) expression and dysregulation of iron metabolism and haeme synthesis signalling. Treatment of ß-thalassaemic mice with the haeme oxygenase inhibitor tin-mesoporphyrin effectively improved the iron disorder and IE, and the ThReticulocyte population and Hsp70 expression were significantly suppressed. This study revealed in detail the progression of IE at the single-cell level and possibly provided clues to find therapeutic targets in thalassaemia.


Subject(s)
Thalassemia , beta-Thalassemia , Mice , Animals , beta-Thalassemia/metabolism , Erythropoiesis , Reticulocytes/metabolism , Iron/metabolism
4.
Nucleic Acids Res ; 51(10): 4774-4790, 2023 06 09.
Article in English | MEDLINE | ID: mdl-36929421

ABSTRACT

Normal erythropoiesis requires the precise regulation of gene expression patterns, and transcription cofactors play a vital role in this process. Deregulation of cofactors has emerged as a key mechanism contributing to erythroid disorders. Through gene expression profiling, we found HES6 as an abundant cofactor expressed at gene level during human erythropoiesis. HES6 physically interacted with GATA1 and influenced the interaction of GATA1 with FOG1. Knockdown of HES6 impaired human erythropoiesis by decreasing GATA1 expression. Chromatin immunoprecipitation and RNA sequencing revealed a rich set of HES6- and GATA1-co-regulated genes involved in erythroid-related pathways. We also discovered a positive feedback loop composed of HES6, GATA1 and STAT1 in the regulation of erythropoiesis. Notably, erythropoietin (EPO) stimulation led to up-regulation of these loop components. Increased expression levels of loop components were observed in CD34+ cells of polycythemia vera patients. Interference by either HES6 knockdown or inhibition of STAT1 activity suppressed proliferation of erythroid cells with the JAK2V617F mutation. We further explored the impact of HES6 on polycythemia vera phenotypes in mice. The identification of the HES6-GATA1 regulatory loop and its regulation by EPO provides novel insights into human erythropoiesis regulated by EPO/EPOR and a potential therapeutic target for the management of polycythemia vera.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors , Erythropoiesis , GATA1 Transcription Factor , Repressor Proteins , Animals , Humans , Mice , Base Sequence , Basic Helix-Loop-Helix Transcription Factors/metabolism , Erythroid Cells/metabolism , GATA1 Transcription Factor/metabolism , Gene Expression Profiling , Polycythemia Vera/genetics , Polycythemia Vera/metabolism , Repressor Proteins/metabolism
5.
Br J Haematol ; 199(3): 427-442, 2022 11.
Article in English | MEDLINE | ID: mdl-35974424

ABSTRACT

Normal early erythropoiesis depends on the precise regulation of protein expression and phosphorylation modification. Dysregulation of protein levels or modification contributes to erythroid disorders. To date, the dynamics of protein phosphorylation profiling across human erythroid development is not fully understood. Here, we characterized quantitative proteomic and phosphoproteomic profiling by tandem mass-tagging technology. We systemically built phospho-expression profiling and expression clusters of 11 414 phosphopeptides for human early erythropoiesis. The standardization methods for multitier integrative analyses revealed multiple functional modules of phosphoproteins (e.g., regulation of the G2/M transition) and active phosphorylated signalling (e.g., cell cycle-related pathways). Our further analysis revealed that CDK family members were the main kinases that phosphorylate substrates in erythroid progenitors and identified that CDK9 played an important role in the proliferation of erythroid progenitors. Collectively, our phosphoproteomic profiling, integrative network analysis and functional studies define landscapes of the phosphoproteome and reveal signalling pathways that are involved in human early erythropoiesis. This study will serve as a valuable resource for further investigations of phosphatase and kinase functions in human erythropoiesis and erythroid-related diseases.


Subject(s)
Erythropoiesis , Proteomics , Humans , Erythropoiesis/genetics , Phosphopeptides , Phosphoproteins/genetics , Phosphoric Monoester Hydrolases
6.
Sci Rep ; 12(1): 5706, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35383224

ABSTRACT

Although an increasing number of patients benefit from immunotherapy and targeted therapies, melanoma remains incurable with increasing incidence. Drug repositioning and repurposing is an alternative strategy to discover and develop novel anticancer drugs or combined therapeutic regimens. In this study, we demonstrated that albendazole (ABZ), an Food and Drug Administration (FDA)-approved broad-spectrum antiparasitic agent, significantly inhibits the proliferation of melanoma cells in vitro and in vivo. RNA sequencing and flow cytometry analysis revealed that ABZ arrests melanoma cells at the G2/M phase of the cell cycle and induces cell apoptosis. More importantly, the CDK4/6 inhibitor palbociclib, as a member of the first and only class of highly specific CDK inhibitors approved for cancer treatment to date, showed significant synergistic effects with ABZ treatment in melanoma cells and mouse models. Taken together, we revealed a previously unappreciated function of ABZ in antimelanoma proliferation by inducing cell cycle arrest and apoptosis and provided a novel combined therapeutic regimen of ABZ plus CDK4/6 inhibitor treatment in melanoma.


Subject(s)
Albendazole , Melanoma , Piperazines , Pyridines , Albendazole/pharmacology , Albendazole/therapeutic use , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Humans , Melanoma/genetics , Mice , Piperazines/pharmacology , Piperazines/therapeutic use , Pyridines/pharmacology , Pyridines/therapeutic use
7.
Blood Cells Mol Dis ; 85: 102477, 2020 11.
Article in English | MEDLINE | ID: mdl-32711219

ABSTRACT

Chronic myeloid leukemia (CML) is a kind of myeloproliferative disorder caused by a constitutively active BCR-ABL tyrosine kinase. Tyrosine kinase inhibitors (TKIs), imatinib and its derivatives, have achieved great progress in the treatment of CML. However, many CML patients do not respond to TKIs alone. p19INK4d, a cyclin-dependent kinase inhibitor, plays important roles in proliferation, DNA damage repair, apoptosis and cell differentiation, but its role in CML is unknown. Herein, we found that the expression of p19INK4d in CML patients was significantly lower than that in healthy controls. p19INK4d overexpression inhibits cell proliferation through cell cycle arrest, and cooperates with imatinib to inhibit CML more effectively in vitro and in vivo. Mechanistically, p19INK4d decreased the expression of BCR-ABL and its downstream molecules p-Mek1/2, moreover, the expression of Gli-1, c-myc, MUC1, Shh and TC48 also reduced significantly. Collectively, p19INK4d inhibits proliferation and enhances imatinib efficacy in the treatment of CML. These findings maybe have implications for developing potential targets to increase imatinib sensitivity for CML.


Subject(s)
Antineoplastic Agents/therapeutic use , Cyclin-Dependent Kinase Inhibitor p19/genetics , Fusion Proteins, bcr-abl/genetics , Gene Expression Regulation, Leukemic , Imatinib Mesylate/therapeutic use , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Cyclin-Dependent Kinase Inhibitor p19/metabolism , Fusion Proteins, bcr-abl/metabolism , Gene Expression Regulation, Leukemic/drug effects , Humans , Imatinib Mesylate/pharmacology , K562 Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Mice, Nude , Signal Transduction/drug effects
8.
Br J Haematol ; 188(2): 321-331, 2020 01.
Article in English | MEDLINE | ID: mdl-31418854

ABSTRACT

Hepcidin (HAMP) synthesis is suppressed by erythropoiesis to increase iron availability for red blood cell production. This effect is thought to result from factors secreted by erythroid precursors. Growth differentiation factor 11 (GDF11) expression was recently shown to increase in erythroid cells of ß-thalassaemia, and decrease with improvement in anaemia. Whether GDF11 regulates hepatic HAMP production has never been experimentally studied. Here, we explore GDF11 function during erythropoiesis-triggered HAMP suppression. Our results confirm that exogenous erythropoietin significantly increases Gdf11 as well as Erfe (erythroferrone) expression, and Gdf11 is also increased, albeit at a lower degree than Erfe, in phlebotomized wild type and ß-thalassaemic mice. GDF11 is expressed predominantly in erythroid burst forming unit- and erythroid colony-forming unit- cells during erythropoiesis. Exogeneous GDF11 administration results in HAMP suppression in vivo and in vitro. Furthermore, exogenous GDF11 decreases BMP-SMAD signalling, enhances SMAD ubiquitin regulatory factor 1 (SMURF1) expression and induces ERK1/2 (MAPK3/1) signalling. ERK1/2 signalling activation is required for GDF11 or SMURF1-mediated suppression in BMP-SMAD signalling and HAMP expression. This research newly characterizes GDF11 in erythropoiesis-mediated HAMP suppression, in addition to ERFE.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Growth Differentiation Factors/metabolism , Hepcidins/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Animals , Bone Morphogenetic Proteins/biosynthesis , Bone Morphogenetic Proteins/genetics , Bone Morphogenetic Proteins/pharmacology , Erythropoiesis/physiology , Erythropoietin/pharmacology , Growth Differentiation Factors/biosynthesis , Growth Differentiation Factors/genetics , Growth Differentiation Factors/pharmacology , Hep G2 Cells , Hepatocytes/metabolism , Hepcidins/metabolism , Humans , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Peptide Hormones/biosynthesis , Peptide Hormones/genetics , Recombinant Proteins/pharmacology , Smad Proteins/metabolism
9.
J Cell Mol Med ; 23(8): 5076-5086, 2019 08.
Article in English | MEDLINE | ID: mdl-31144421

ABSTRACT

U2AF1 (U2AF35) is the small subunit of the U2 auxiliary factor (U2AF) that constitutes the U2 snRNP (small nuclear ribonucleoproteins) of the spliceosome. Here, we examined the function of U2AF1 in human erythropoiesis. First, we examined the expression of U2AF1 during in vitro human erythropoiesis and showed that U2AF1 was highly expressed in the erythroid progenitor burst-forming-unit erythroid (BFU-E) cell stage. A colony assay revealed that U2AF1 knockdown cells failed to form BFU-E and colony-forming-unit erythroid (CFU-E) colonies. Our results further showed that knockdown of U2AF1 significantly inhibited cell growth and induced apoptosis in erythropoiesis. Additionally, knockdown of U2AF1 also delayed terminal erythroid differentiation. To explore the molecular basis of the impaired function of erythroid development, RNA-seq was performed and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis results showed that several biological pathways, including the p53 signalling pathway, MAPK signalling pathway and haematopoietic cell lineage, were involved, with the p53 signalling pathway showing the greatest involvement. Western blot analysis revealed an increase in the protein levels of downstream targets of p53 following U2AF1 knockdown. The data further showed that depletion of U2AF1 altered alternatively spliced apoptosis-associated gene transcripts in CFU-E cells. Our findings elucidate the role of U2AF1 in human erythropoiesis and reveal the underlying mechanisms.


Subject(s)
Cell Proliferation/genetics , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , Splicing Factor U2AF/genetics , Erythroid Precursor Cells/cytology , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Humans , Mitogen-Activated Protein Kinase Kinases/genetics , RNA-Seq , Signal Transduction/genetics , Spliceosomes/genetics , Tumor Suppressor Protein p53/genetics
10.
Haematologica ; 104(11): 2178-2187, 2019 11.
Article in English | MEDLINE | ID: mdl-30872372

ABSTRACT

Ubiquitination is an enzymatic post-translational modification that affects protein fate. The ubiquitin-proteasome system (UPS) was first discovered in reticulocytes where it plays important roles in reticulocyte maturation. Recent studies have revealed that ubiquitination is a dynamic and reversible process and that deubiquitylases are capable of removing ubiquitin from their protein substrates. Given the fact that the UPS is highly active in reticulocytes, it is speculated that deubiquitylases may play important roles in erythropoiesis. Yet, the role of deubiquitylases in erythropoiesis remains largely unexplored. In the present study, we found that the expression of deubiquitylase USP7 is significantly increased during human terminal erythroid differentiation. We further showed that interfering with USP7 function, either by short hairpin RNA-mediated knockdown or USP7-specific inhibitors, impaired human terminal erythroid differentiation due to decreased GATA1 level and that restoration of GATA1 levels rescued the differentiation defect. Mechanistically, USP7 deficiency led to a decreased GATA1 protein level that could be reversed by proteasome inhibitors. Furthermore, USP7 interacts directly with GATA1 and catalyzes the removal of K48-linked poly ubiquitylation chains conjugated onto GATA1, thereby stabilizing GATA1 protein. Collectively, our findings have identified an important role of a deubiquitylase in human terminal erythroid differentiation by stabilizing GATA1, the master regulator of erythropoiesis.


Subject(s)
Cell Differentiation/genetics , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Erythropoiesis/genetics , GATA1 Transcription Factor/metabolism , Ubiquitin-Specific Peptidase 7/genetics , Ubiquitin-Specific Peptidase 7/metabolism , Biomarkers , Gene Expression Regulation, Developmental , Humans , Immunophenotyping , Models, Biological , Protein Binding , Protein Stability , Ubiquitination
11.
Cell Regen ; 7(2): 45-49, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30671230

ABSTRACT

Erythrocytes (red blood cells, RBCs) facilitate gas exchange in the lungs and transport oxygen to the tissues. The human body must maintain erythrocyte regeneration to support metabolically active cells and tissues. In many hematological diseases, erythrocyte regeneration is impaired. Researchers have studied erythrocyte regeneration for many years both in vivo and in vitro. In this review, we summarize the sources and main culture methods for generating mature and functional red blood cells in vitro. Hematopoietic stem cells (HSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are classic sources for erythrocyte regeneration. In addition, alternative sources such as immortalized adult human erythroid cell lines and transformed fibroblasts have also been generated and have produced functional red blood cells. The culture systems for erythrocytes differ among laboratories. Researchers hope that improvements in culture techniques may contribute to improved RBC outcomes for blood transfusions, drug delivery and the treatment of hematological diseases.

12.
Blood ; 129(2): 226-237, 2017 01 12.
Article in English | MEDLINE | ID: mdl-27879259

ABSTRACT

Terminal erythroid differentiation is tightly coordinated with cell-cycle exit, which is regulated by cyclins, cyclin-dependent kinases, and cyclin-dependent kinase inhibitors (CDKI), yet their roles in erythropoiesis remain to be fully defined. We show here that p19INK4d, a member of CDKI family, is abundantly expressed in erythroblasts and that p19INK4d knockdown delayed erythroid differentiation, inhibited cell growth, and led to increased apoptosis and generation of abnormally nucleated late-stage erythroblasts. Unexpectedly, p19INK4d knockdown did not affect cell cycle. Rather, it led to decreased expression of GATA1 protein. Importantly, the differentiation and nuclear defects were rescued by ectopic expression of GATA1. Because the GATA1 protein is protected by nuclear heat shock protein family (HSP) member HSP70, we examined the effects of p19INK4d knockdown on HSP70 and found that p19INK4d knockdown led to decreased expression of HSP70 and its nuclear localization. The reduced levels of HSP70 are the result of reduced extracellular signal-regulated kinase (ERK) activation. Further biochemical analysis revealed that p19INK4d directly binds to Raf kinase inhibitor PEBP1 and that p19INK4d knockdown increased the expression of PEBP1, which in turn led to reduced ERK activation. Thus we have identified an unexpected role for p19INK4d via a novel PEBP1-p-ERK-HSP70-GATA1 pathway. These findings are likely to have implications for improved understanding of disordered erythropoiesis.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p19/metabolism , Erythropoiesis/physiology , GATA1 Transcription Factor/metabolism , Gene Expression Regulation/physiology , Blotting, Western , Cells, Cultured , Fetal Blood , Flow Cytometry , Fluorescent Antibody Technique , Gene Knockdown Techniques , Humans , Immunoprecipitation , Polymerase Chain Reaction , Signal Transduction/physiology
13.
Theranostics ; 6(12): 2209-2224, 2016.
Article in English | MEDLINE | ID: mdl-27924158

ABSTRACT

Multiple myeloma (MM) is largely incurable and drug-resistant. Novel therapeutic approaches such as inhibiting autophagy or rational drug combinations are aimed to overcome this issue. In this study, we found that lycorine exhibits a promising anti-proliferative activity against MM in vitro and in vivo by inhibiting autophagy. We identified High mobility group box 1 (HMGB1), an important regulator of autophagy, as the most aberrantly expressed protein after lycorine treatment and as a critical mediator of lycorine activity. Gene expression profiling (GEP) analysis showed that higher expression of HMGB1 is linked with the poor prognosis of MM. This correlation was further confirmed in human bone marrow CD138+ primary myeloma cells and MM cell lines. Mechanistically, proteasomal degradation of HMGB1 by lycorine inhibits the activation of MEK-ERK thereby decreases phosphorylation of Bcl-2 resulting in constitutive association of Bcl-2 with Beclin-1. In addition, we observed higher HMGB1 expression in bortezomib resistant cells and the combination of bortezomib plus lycorine was highly efficient in vitro and in vivo myeloma models as well as in re-sensitizing resistant cells to bortezomib. These observations indicate lycorine as an effective autophagy inhibitor and reveal that lycorine alone or in combination with bortezomib is a potential therapeutic strategy.


Subject(s)
Amaryllidaceae Alkaloids/administration & dosage , Antineoplastic Agents/administration & dosage , Autophagy/drug effects , Bortezomib/administration & dosage , Down-Regulation , HMGB1 Protein/biosynthesis , Multiple Myeloma/drug therapy , Phenanthridines/administration & dosage , Animals , Cell Survival/drug effects , Disease Models, Animal , Gene Expression Profiling , Heterografts , Humans , Mice, Inbred NOD , Mice, SCID , Treatment Outcome , Tumor Cells, Cultured
14.
Oncotarget ; 6(40): 43033-47, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26543232

ABSTRACT

MicroRNAs (miRNAs), a class of small non-coding linear RNAs, have been shown to play a crucial role in erythropoiesis. To evaluate the indispensable role of constant suppression of miR-150 during terminal erythropoiesis, we performed miR-150 gain- and loss-of-function experiments on hemin-induced K562 cells and EPO-induced human CD34+ cells. We found that forced expression of miR-150 suppresses commitment of hemoglobinization and CD235a labeling in both cell types. Erythroid proliferation is also inhibited via inducing apoptosis and blocking the cell cycle when miR-150 is overexpressed. In contrast, miR-150 inhibition promotes terminal erythropoiesis. 4.1 R gene is a new target of miR-150 during terminal erythropoiesis, and its abundance ensures the mechanical stability and deformability of the membrane. However, knockdown of 4.1 R did not affect terminal erythropoiesis. Transcriptional profiling identified more molecules involved in terminal erythroid dysregulation derived from miR-150 overexpression. These results shed light on the role of miR-150 during human terminal erythropoiesis. This is the first report highlighting the relationship between miRNA and membrane protein and enhancing our understanding of how miRNA works in the hematopoietic system.


Subject(s)
Cell Differentiation/genetics , Erythroid Cells/cytology , Erythropoiesis/genetics , MicroRNAs/genetics , Blotting, Western , Cell Line , Flow Cytometry , Humans , K562 Cells , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Transduction, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...