Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Publication year range
1.
J Food Biochem ; 46(12): e14379, 2022 12.
Article in English | MEDLINE | ID: mdl-35976957

ABSTRACT

Diabetic nephropathy (DN) is a highly prevalent and severe diabetic complication. It is urgent to explore high efficiency and minor side effects therapy for DN. Chrysin is a natural flavonoid with various biological activities found in honey and propolis, and has considerable potential to improve DN. The study was designed to explore the effects and the specific underlying mechanism of chrysin for DN in high-fat-diet (HFD) and streptozotocin (STZ) induced DN mice. Firstly, the study revealed that chrysin effectively improved obesity, insulin resistance (IR), renal function, and pathological injury in DN mice. Secondly, the study found that chrysin improved the key indices and markers of lipid accumulation, oxidative stress, and inflammation which are closely related to the development or progression of DN. Moreover, chrysin markedly modulated lipid metabolism by regulating Adenosine 5' monophosphate-activated protein kinase (AMPK) and essential downstream proteins. Furthermore, AMPK inhibitor (Dorsomorphin) intervention partially suppressed the positive effects of chrysin on all testing indicators, indicating that activated AMPK is crucial for chrysin action on DN. The present study demonstrated that chrysin may improve DN by regulating lipid metabolism, and activated AMPK plays a critical role in the regulation of chrysin. PRACTICAL APPLICATIONS: The study verified the positive effects of chrysin on obesity, insulin resistance, kidney injury, renal function, lipid accumulation, inflammation, and oxidative stress, which are closely related to the development or progression of diabetic nephropathy (DN). Moreover, we explored that chrysin improves DN by regulating AMPK-mediated lipid metabolism. Furthermore, the AMPK inhibitor was used to confirm that activated AMPK plays a critical role in the effects of chrysin. These results could offer a full explanation and a potential option for adjuvant therapy of DN diabetes with chrysin.


Subject(s)
Diabetes Mellitus , Diabetic Nephropathies , Insulin Resistance , Mice , Animals , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , AMP-Activated Protein Kinases/genetics , Streptozocin/adverse effects , Lipid Metabolism , Flavonoids/pharmacology , Inflammation , Lipids
2.
Chemosphere ; 243: 125271, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31760289

ABSTRACT

Microplastics have become a contaminant of increasing concern in soils. Although biodegradable plastics were considered as alternatives of traditional plastics, some evidence showed that biodegradable plastics might produce more microplastics. Until now, the effect of biodegradable microplastics on soil functions and processes, as well as microbial communities is uncertain. Based on high throughput sequencing, enzymatic activity assay and dynamic analysis of soil carbon and nitrogen, we investigated the effects of biodegradable polylactic acid microplastics (PLA MPs) on soil microbiota and related ecological processes under conditions of high or low carbon content. The results showed that PLA MPs had no significant effect on the overall diversity and composition of bacterial communities or related ecosystem functions and processes. However, co-occurrence network analysis revealed that PLA MPs impacted the interactions between constituent species, which might have legacy effect on soil bacterial communities and functions. Our data also revealed that PLA MPs could trade off the priming effect of carbon source. Our results provided an integrated picture in understanding the effects of PLA MPs on soil microbes, properties and ecological functions, which will help to further understand the effects of MPs on terrestrial ecosystems.


Subject(s)
Microplastics/chemistry , Polyesters/chemistry , Soil Microbiology , Soil Pollutants/chemistry , Bacteria , Carbon , Ecology , Microbiota/drug effects , Microplastics/toxicity , Nitrogen , Plastics/chemistry , Soil/chemistry , Soil Pollutants/toxicity
3.
Chemosphere ; 211: 25-33, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30071433

ABSTRACT

To enhance nitrogen removal efficiency, a new electrolysis augmented constructed wetland (E-CW) was applied for nitrogen removal from waste water treatment plant (WWTP) effluent. This work demonstrated that E-CW could remove NO3- efficiently (45.5%-83.4%) under low CCOD/N ratio (average 2.29 ±â€¯0.45) with little amount of NH4+ and NO2- generation. High throughput 16S rRNA sequence analysis revealed that Proteobacteria, Actinobacteria, Cyanobacteria, Bacteroidetes, and Verrucomicrobia were the dominant phyla in the E-CW. However, abundance of denitrifiers and denitrification genes decreased along with the operation of E-CW. Four functional gene pairs of anammox-amoA, (narG + napA)-(nirK + nirS), (narG + napA)-nosZ and qnorB-nosZ showed positive correlations with each other. Co-occurrence network analysis results indicated that functional guilds of FeOB and FeRB coupled with denitrifiers and contributed to the process of nitrogen removal in the E-CW. Overall, this work illustrated E-CW was a feasible and effective technology for enhancing nitrogen removal, and provided a theoretical basis for better design and operation of E-CW.


Subject(s)
Denitrification/genetics , Nitrogen Cycle/genetics , Wastewater/microbiology , Wetlands , Network Meta-Analysis
4.
J Environ Sci (China) ; 66: 113-124, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29628077

ABSTRACT

Effluents from wastewater treatment plants (WWTPs) containing microorganisms and residual nutrients can influence the biofilm formation. Although the process and mechanism of bacterial biofilm formation have been well characterized, little is known about the characteristics and interaction of bacteria, archaea and eukaryotes in the early colonization, especially under the influence of WWTP effluent. The aim of this study was to characterize the important bacterial, archaeal and eukaryotic species in the early stage of biofilm formation downstream of the WWTP outlet. Water and biofilm samples were collected 24 and 48hr after the deposition of bio-cords in the stream. Illumina Miseq sequencing of the 16S and 18S rDNA showed that, among the three domains, the bacterial biofilm community had the largest alpha and beta diversity. The early bacterial colonizers appeared to be "biofilm-specific", with only a few dominant operational taxonomic units (OTUs) shared between the biofilm and the ambient water environment. Alpha-proteobacteria and Ciliophora tended to dominate the bacterial and eukaryotic communities, respectively, of the early biofilm already at 24hr, whereas archaea played only a minor role during the early stage of colonization. The network analysis showed that the three domains of microbial community connected highly during the early colonization and it might be a characteristic of the microbial communities in the biofilm formation process where co-occurrence relationships could drive coexistence and diversity maintenance within the microbial communities.


Subject(s)
Biofilms/growth & development , Bioreactors/microbiology , Waste Disposal, Fluid , Wastewater/microbiology , Archaea/genetics , Bacteria/genetics
5.
Huan Jing Ke Xue ; 39(11): 4938-4945, 2018 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-30628215

ABSTRACT

In order to reveal the dynamic changes of nitrogen-transforming and phosphorus-accumulating bacteria in the process of cyanobacterial bloom formation, bacterial community structure and functional genes associated with nitrogen cycling were analyzed using high-throughput sequencing and real-time quantitative PCR (qPCR). The high-throughput sequencing results showed that the diversity of bacterial communities decreased during cyanobacterial blooms, and the lacustrine free-living and bloom-attached bacterial communities varied with increased bloom density. With increasing density of cyanobacteria, the relative abundance of Actinobacteria and Bacteroidetes decreased, whereas that of Firmicutes increased. Moreover, the growth of phosphate-accumulating organisms was increased in the phycosphere of cyanobacterial blooms, while that of nitrifiers was inhibited. Denitrifiers increased significantly under moderate blooms. The qPCR data also revealed that the abundance of nitrification and denitrification genes decreased or disappeared with the development of cyanobacterial blooms, indicating that the nitrogen transformation process might be inhibited, which showed a positive feedback of bacterial community to the development of Microcystis blooms by satisfying the needs of the nutrients budget.


Subject(s)
Cyanobacteria/growth & development , Eutrophication , Nitrogen/metabolism , Phosphorus/metabolism , Cyanobacteria/classification , Cyanobacteria/metabolism , Denitrification , Genes, Bacterial , High-Throughput Nucleotide Sequencing , Real-Time Polymerase Chain Reaction
6.
Biochem Mol Biol Educ ; 45(4): 343-350, 2017 Jul 08.
Article in English | MEDLINE | ID: mdl-28696055

ABSTRACT

With the increasing importance in the application of the molecular biological detection technology in the field of food safety, strengthening education in molecular biology experimental techniques is more necessary for the culture of the students in food quality and safety major. However, molecular biology experiments are not always in curricula of Food quality and safety Majors. This paper introduced a project "competition of molecular biological detection technology for food safety among undergraduate sophomore students in food quality and safety major", students participating in this project needed to learn the fundamental molecular biology experimental techniques such as the principles of molecular biology experiments and genome extraction, PCR and agarose gel electrophoresis analysis, and then design the experiments in groups to identify the meat species in pork and beef products using molecular biological methods. The students should complete the experimental report after basic experiments, write essays and make a presentation after the end of the designed experiments. This project aims to provide another way for food quality and safety majors to improve their knowledge of molecular biology, especially experimental technology, and enhances them to understand the scientific research activities as well as give them a chance to learn how to write a professional thesis. In addition, in line with the principle of an open laboratory, the project is also open to students in other majors in East China University of Science and Technology, in order to enhance students in other majors to understand the fields of molecular biology and food safety. © 2017 by The International Union of Biochemistry and Molecular Biology, 45(4):343-350, 2017.


Subject(s)
Comprehension , Food Safety/methods , Molecular Biology/methods , Muscle Proteins/analysis , Red Meat/analysis , Animals , Cattle , DNA Primers/chemistry , Educational Measurement/statistics & numerical data , Food Analysis/instrumentation , Food Analysis/methods , Food Quality , Humans , Learning , Molecular Biology/instrumentation , Polymerase Chain Reaction/methods , Students , Swine
7.
Sci Total Environ ; 609: 297-303, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-28753504

ABSTRACT

Annually occurred cyanobacterial bloom aggravated eutrophication situation and changed the lacustrine ecosystem components. Recently, high concentration of bloom cyanobacteria had been found to accelerate total nitrogen (TN) removal. However, the contribution of cyanobacterial bloom to TN removal remained unclear. In this study, microcosms with different density of bloom cyanobacteria were constructed and quantitative PCR and structural equation modelling (SEM) were used to analyze the microbes, environmental variables and the causal relationship to TN removal. Total bacteria, ammonia-oxidizing archaea and nirS gene abundances were indirectly influenced by cyanobacteria biomass and all of them had a direct effect on TN removal. SEM confirmed that cyanobacteria made a direct contribution to ammonium­nitrogen (NH4+-N) level in water and induced nitrification activity, which favored the process of denitrification by supplying substrate and aggravating the anoxic status. These results strongly suggested that an increased cyanobacteria biomass had strong impacts on mineralization, nitrification and denitrification by mediating TN, dissolved organic carbon and dissolved oxygen directly and subsequently influenced the nitrifiers and denitrifiers.


Subject(s)
Cyanobacteria/metabolism , Denitrification , Eutrophication , Nitrogen/isolation & purification , Ammonium Compounds , Nitrification
8.
Bioresour Technol ; 220: 225-232, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27573476

ABSTRACT

The average COD, TN, TP, and NH4(+)-N elimination rates in a new wastewater treatment plant (WWTP) based on a modified A2/O process were 83%, 72.4%, 93.5%, and 98.6%, respectively, even under conditions of a low C/N ratio and low temperature. Among the four potential denitrifying units, the post-anoxic unit was the least efficient with respect to the removal efficiency. However, the structures of the bacterial community among samples obtained from the treatment units were similar, as demonstrated using Illumina Miseq high-throughput sequencing. Genera with nitrifying, denitrifying, hydrolyzing, and glycogen-accumulating activities were identified in all units, indicating that functional groups were highly enriched in the active sludges and thus enabled nitrogen removal. The key functional microorganisms responsible for nitrification-denitrification in the WWTP were species belonging to the genera Nitrospira, Hydrogenophilaceae, Comamonas, Dechloromonas, Thauera, Haliangium, and Halomonas.


Subject(s)
Bioreactors/microbiology , Sewage/microbiology , Water Purification/methods , Denitrification , High-Throughput Nucleotide Sequencing , Nitrification
9.
Microbes Environ ; 28(4): 479-86, 2013.
Article in English | MEDLINE | ID: mdl-24240317

ABSTRACT

The overuse of antibiotics has accelerated antibiotic resistance in the natural environment, especially fresh water, generating a potential risk for public health around the world. In this study, antibiotic resistance in Lake Taihu was investigated and this was the first thorough data obtained through culture-dependent methods. High percentages of resistance to streptomycin and ampicillin among bacterial isolates were detected, followed by tetracycline and chloramphenicol. Especially high levels of ampicillin resistance in the western and northern regions were illustrated. Bacterial identification of the isolates selected for further study indicated the prevalence of some opportunistic pathogens and 62.0% of the 78 isolates exhibited multiple antibiotic resistance. The presence of ESBLs genes was in the following sequence: bla(TEM) > bla(SHV) > bla(CTMX) and 38.5% of the isolates had a class I integrase gene. Of all tested strains, 80.8% were able to transfer antibiotic resistance through conjugation. We also concluded that some new families of human-associated ESBLs and AmpC genes can be found in natural environmental isolates. The prevalence of antibiotic resistance and the dissemination of transferable antibiotic resistance in bacterial isolates (especially in opportunistic pathogens) was alarming and clearly indicated the urgency of realizing the health risks of antibiotic resistance to human and animal populations who are dependent on Lake Taihu for water consumption.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/isolation & purification , Drug Resistance, Multiple, Bacterial , Gene Transfer, Horizontal , Lakes/microbiology , Bacteria/classification , Bacteria/genetics , Humans , Microbial Sensitivity Tests , Molecular Sequence Data , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL