Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 126(41): 17777-17787, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36304670

ABSTRACT

We use microwave-induced dynamic nuclear polarization (DNP) of the substitutional nitrogen defects (P1 centers) in diamond to hyperpolarize bulk 13C nuclei in both single crystal and powder samples at room temperature at 3.34 T. The large (>100-fold) enhancements demonstrated correspond to a greater than 10 000-fold improvement in terms of signal averaging of the 1% abundant 13C spins. The DNP was performed using low-power solid state sources under static (nonspinning) conditions. The DNP spectrum (DNP enhancement as a function of microwave frequency) of diamond powder shows features that broadly correlate with the EPR spectrum. A well-defined negative Overhauser peak and two solid effect peaks are observed for the central (m I = 0) manifold of the 14N spins. Previous low temperature measurements in diamond had measured a positive Overhauser enhancement in this manifold. Frequency-chirped millimeter-wave excitation of the electron spins is seen to significantly improve the enhancements for the two outer nuclear spin manifolds (mI = ±1) and to blur some of the sharper features associated with the central manifold. The outer lines are best fit using a combination of the cross effect and the truncated cross effect, which is known to mimic features of an Overhauser effect. Similar features are also observed in experiments on single crystal samples. The observation of all of these mechanisms in a single material system under the same experimental conditions is likely due to the significant heterogeneity of the high pressure, high temperature (HPHT) type Ib diamond samples used. Large room temperature DNP enhancements at fields above a few tesla enable spectroscopic studies with better chemical shift resolution under ambient conditions.

2.
Solid State Nucl Magn Reson ; 101: 68-75, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31128358

ABSTRACT

Dynamic nuclear polarization (DNP) enhanced nuclear magnetic resonance (NMR) offers a promising route to studying local atomic environments at the surface of both crystalline and amorphous materials. We take advantage of unpaired electrons due to defects close to the surface of the silicon microparticles to hyperpolarize adjacent 1H nuclei. At 3.3 T and 4.2 K, we observe the presence of two proton peaks, each with a linewidth on the order of 5 kHz. Echo experiments indicate a homogeneous linewidth of ∼150-300 Hz for both peaks, indicative of a sparse distribution of protons in both environments. The high frequency peak at 10 ppm lies within the typical chemical shift range for proton NMR, and was found to be relatively stable over repeated measurements. The low frequency peak was found to vary in position between -19 and -37 ppm, well outside the range of typical proton NMR shifts, and indicative of a high-degree of chemical shielding. The low frequency peak was also found to vary significantly in intensity across different experimental runs, suggesting a weakly-bound species. These results suggest that the hydrogen is located in two distinct microscopic environments on the surface of these Si particles.

3.
J Inorg Biochem ; 130: 15-27, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24145066

ABSTRACT

A series of chiral Ru(II) complexes bearing thiophene ligands were synthesized and characterized. Both Ru(II) complexes Δ/Λ-[Ru(bpy)2(pscl)](2+) (Δ/Λ-1) and Δ/Λ-[Ru(bpy)2(psbr)](2+) (Δ/Λ-2) (bpy=2,2'-bipyridine, pscl=2-(5-chlorothiophen-2-yl)imidazo[4,5-f][1,10]phenanthroline, psbr=2-(5-bromothiophen-2-yl)imidazo[4,5-f][1,10]phenanthroline) showed antitumor activities against A549, HepG2 and BEL-7402 tumor cell lines, especially HeLa tumor cell line. Moreover, Δ enantiomers were more active than Λ enantiomers, accounting for the different cellular uptake. In addition, with the extension of time, these enantiomers could finally accumulate in the nucleus, suggesting that nucleic acids were the cellular target of these enantiomers. The DNA-binding behaviors of complexes were studied using spectroscopic and viscosity measurements. Results suggested that four complexes could bind to DNA in an intercalative mode but no obvious DNA-binding selectivity between the enantiomers was observed. Topoisomerase inhibition and DNA religation assay confirmed that four complexes acted as efficient dual topoisomerase I and II poisons, DNA strand breaks had also been observed from alkaline single cell gel electrophoresis (comet assay). Δ-1 and Δ-2 inhibited the growth of HeLa cells through the induction of apoptotic cell death, as evidenced by the Alexa Fluor® 488 annexin V staining assays and flow cytometry analysis. The results demonstrated that Δ/Λ-1 and Δ/Λ-2 acted as dual topoisomerase I and II poisons and caused DNA damage that could lead to cell cycle arrest by apoptosis.


Subject(s)
Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Ruthenium/chemistry , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cell Proliferation/drug effects , DNA/metabolism , HeLa Cells/drug effects , Humans , Molecular Structure , Organometallic Compounds/chemical synthesis , Phenanthrolines/chemistry , Ruthenium/metabolism , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...