Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurocytol ; 33(1): 101-16, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15173635

ABSTRACT

The relationship between efferents of the hypothalamic suprachiasmatic nucleus (SCN) and neurons of the thalamic paraventricular nucleus (PVT) projecting to the amygdala was investigated in the rat using tract tracing in light and electron microscopy. Biotinylated dextran amine was used to label anterogradely SCN efferents. These fibers were found to reach the thalamic midline, terminating in PVT, through three pathways: anterodorsally through the preoptic region, dorsally through the periventricular hypothalamus, and through the contralateral medial hypothalamic and preoptic areas after crossing the midline in the optic chiasm. Preterminal and terminal-like elements labeled from the SCN were distributed throughout the rostrocaudal extent of PVT, with an anteroposterior gradient of density. Labeled terminal elements were densest in the dorsal portion of PVT beneath the ependymal lining and some of them entered the ependyma. Anterograde tracing of SCN fibers was combined with injections of retrograde tracers in the amygdala. Numerous retrogradely labeled cell bodies were seen throughout PVT, with a prevalence in its anterodorsal portion. Overlap was detected between puncta labeled from the SCN and retrogradely labeled neurons, especially in the anterodorsal sector of PVT, where numerous puncta were in close apposition to thalamo-amygdaloid cells. Electron microscopy revealed that boutons labeled from the SCN established synaptic contacts with dendritic profiles of PVT neurons labeled from the amygdala. The findings demonstrate that information processed in the biological clock is conveyed to the amygdala through PVT, indicating that this nucleus plays a role in the transfer of circadian timing information to the limbic system.


Subject(s)
Amygdala/ultrastructure , Biotin/analogs & derivatives , Midline Thalamic Nuclei/ultrastructure , Suprachiasmatic Nucleus/ultrastructure , Amygdala/chemistry , Animals , Axonal Transport/physiology , Biotin/analysis , Dextrans/analysis , Male , Microscopy, Electron , Microscopy, Polarization , Midline Thalamic Nuclei/chemistry , Neural Pathways/chemistry , Neural Pathways/ultrastructure , Rats , Rats, Wistar , Suprachiasmatic Nucleus/chemistry
2.
Brain Res Bull ; 57(5): 631-8, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11927366

ABSTRACT

It has been repeatedly reported that Fos is spontaneously induced in several brain structures, including the cerebral cortex, during wakefulness. To ascertain whether cortical interneurons are involved in this state-dependent oscillation of gene regulation, we combined Fos immunocytochemistry with immunostaining of either parvalbumin or calbindin, known markers of cortical interneurons. Immunopositive neurons were examined in the sensorimotor and cingulate cortex. In rats perfused in basal conditions, a minor proportion (around 8%) of Fos-immunoreactive neurons in the parietal cortex were also parvalbumin- or calbindin-immunoreactive; these double immunostained cells accounted for 13% of the parvalbumin- and 34% of the calbindin-labeled neurons. Colocalization of Fos with either calcium-binding protein was instead not observed in the cingulate cortex. In rats stimulated by novel environmental cues during the period of wakefulness preceding perfusion, Fos-positive neurons increased markedly relative to unstimulated animals, and involved the majority of the calbindin- or parvalbumin-labeled cell populations (60-75% and over 95%, respectively). In the neuronal populations in which Fos was induced by exposure to the enriched environment, the proportion of calbindin- and parvalbumin-labeled cells was larger than in the unstimulated cases, and the increment was statistically significant in the cingulate cortex. The results demonstrate that Fos induction occurring in the cortex during undisturbed wakefulness in a familiar environment involves a minor proportion of interneurons. Furthermore, the findings indicate that the addition of novel environmental stimuli results in an increase of Fos-expressing neurons whose recruitment, at least in the cingulate cortex, involves a higher proportion of interneurons than of projection neurons.


Subject(s)
Biological Clocks/genetics , Calcium-Binding Proteins/physiology , Cerebral Cortex/physiology , Exploratory Behavior/physiology , Interneurons/physiology , Proto-Oncogene Proteins c-fos/metabolism , Wakefulness/physiology , Animals , Cerebral Cortex/cytology , Electroencephalography , Environment, Controlled , Immunohistochemistry , Interneurons/cytology , Male , Neural Inhibition/physiology , Rats , Rats, Wistar , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...