Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Brief Bioinform ; 25(4)2024 May 23.
Article in English | MEDLINE | ID: mdl-38797969

ABSTRACT

In recent decades, antibodies have emerged as indispensable therapeutics for combating diseases, particularly viral infections. However, their development has been hindered by limited structural information and labor-intensive engineering processes. Fortunately, significant advancements in deep learning methods have facilitated the precise prediction of protein structure and function by leveraging co-evolution information from homologous proteins. Despite these advances, predicting the conformation of antibodies remains challenging due to their unique evolution and the high flexibility of their antigen-binding regions. Here, to address this challenge, we present the Bio-inspired Antibody Language Model (BALM). This model is trained on a vast dataset comprising 336 million 40% nonredundant unlabeled antibody sequences, capturing both unique and conserved properties specific to antibodies. Notably, BALM showcases exceptional performance across four antigen-binding prediction tasks. Moreover, we introduce BALMFold, an end-to-end method derived from BALM, capable of swiftly predicting full atomic antibody structures from individual sequences. Remarkably, BALMFold outperforms those well-established methods like AlphaFold2, IgFold, ESMFold and OmegaFold in the antibody benchmark, demonstrating significant potential to advance innovative engineering and streamline therapeutic antibody development by reducing the need for unnecessary trials. The BALMFold structure prediction server is freely available at https://beamlab-sh.com/models/BALMFold.


Subject(s)
Antibodies , Antibodies/chemistry , Antibodies/immunology , Computational Biology/methods , Protein Conformation , Humans , Models, Molecular , Deep Learning
2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464112

ABSTRACT

Proteins serve as the workhorses of living organisms, orchestrating a wide array of vital functions. Post-translational modifications (PTMs) of their amino acids greatly influence the structural and functional diversity of different protein types and uphold proteostasis, allowing cells to swiftly respond to environmental changes and intricately regulate complex biological processes. To this point, efforts to model the complex features of proteins have involved the training of large and expressive protein language models (pLMs) such as ESM-2 and ProtT5, which accurately encode structural, functional, and physicochemical properties of input protein sequences. However, the over 200 million sequences that these pLMs were trained on merely scratch the surface of proteomic diversity, as they neither input nor account for the effects of PTMs. In this work, we fill this major gap in protein sequence modeling by introducing PTM tokens into the pLM training regime. We then leverage recent advancements in structured state space models (SSMs), specifically Mamba, which utilizes efficient hardware-aware primitives to overcome the quadratic time complexities of Transformers. After adding a comprehensive set of PTM tokens to the model vocabulary, we train bidirectional Mamba blocks whose outputs are fused with state-of-the-art ESM-2 embeddings via a novel gating mechanism. We demonstrate that our resultant PTM-aware pLM, PTM-Mamba, improves upon ESM-2's performance on various PTM-specific tasks. PTM-Mamba is the first and only pLM that can uniquely input and represent both wild-type and PTM sequences, motivating downstream modeling and design applications specific to post-translationally modified proteins. To facilitate PTM-aware protein language modeling applications, we have made our model available at: https://huggingface.co/ChatterjeeLab/PTM-Mamba.

SELECTION OF CITATIONS
SEARCH DETAIL
...