Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2314249, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38564779

ABSTRACT

Detecting high-energy photons from the deep ultraviolet (DUV) to X-rays is vital in security, medicine, industry, and science. Wide bandgap (WBG) semiconductors exhibit great potential for detecting high-energy photons. However, the implementation of highly sensitive and high-speed detectors based on WBG semiconductors has been a huge challenge due to the inevitable deep level traps and the lack of appropriate device structure engineering. Here, a sensitive and fast pyroelectric photoconductive diode (PPD), which couples the interface pyroelectric effect with the photoconductive effect based on tailored polycrystal Ga-rich GaOx (PGR-GaOx) Schottky photodiode, is first proposed. The PPD device exhibits ultrahigh detection performance for DUV and X-ray light. The responsivity for DUV light and sensitivity for X-ray are up to 104 A W-1 and 105 µC Gyair -1 cm-2, respectively. Especially, the interface pyroelectric effect induced by polar symmetry in the depletion region of the PGR-GaOx can significantly improve the response speed of the device by 105 times. Furthermore, the potential of the device is demonstrated for imaging enhancement systems with low power consumption and high sensitivity. This work fully excavates the potential of the pyroelectric effect for detectors and provides a novel design strategy to achieve sensitive and high-speed detectors.

2.
Food Chem ; 448: 139088, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38547707

ABSTRACT

The duration of storage significantly influences the quality and market value of Qingzhuan tea (QZT). Herein, a high-resolution multiple reaction monitoring (MRMHR) quantitative method for markers of QZT storage year was developed. Quantitative data alongside multivariate analysis were employed to discriminate and predict the storage year of QZT. Furthermore, the content of the main biochemical ingredients, catechins and alkaloids, and free amino acids (FAA) were assessed for this purpose. The results show that targeted marker-based models exhibited superior discrimination and prediction performance among four datasets. The R2Xcum, R2Ycum and Q2cum of orthogonal projection to latent structure-discriminant analysis discrimination model were close to 1. The correlation coefficient (R2) and the root mean square error of prediction of the QZT storage year prediction model were 0.9906 and 0.63, respectively. This study provides valuable insights into tea storage quality and highlights the potential application of targeted markers in food quality evaluation.


Subject(s)
Camellia sinensis , Food Storage , Metabolomics , Tea , Tea/chemistry , Multivariate Analysis , Camellia sinensis/chemistry , Discriminant Analysis , Catechin/analysis , Catechin/chemistry , Amino Acids/analysis , Amino Acids/chemistry , Alkaloids/analysis , Alkaloids/chemistry , Chromatography, High Pressure Liquid , Plant Extracts/chemistry , Plant Extracts/analysis
3.
Food Res Int ; 178: 113923, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309902

ABSTRACT

Wine is a very popular alcoholic drink owing to its health benefits of antioxidant effects. However, profits-driven frauds of wine especially false declarations of variety frequently occurred in markets. In this work, an UHPLC-QTOF-MS-based untargeted metabolomics method was developed for metabolite profiling of 119 bottles of Chinese red wines from four varieties (Cabernet Sauvignon, Merlot, Cabernet Gernischt, and Pinot Noir). The metabolites of red wines from different varieties were assessed using orthogonal partial least-squares discriminant analysis (OPLS-DA) and analyzed using KEGG metabolic pathway analysis. Results showed that the differential compounds among different varieties of red wines are mainly flavonoids, phenols, indoles and amino acids. The KEGG metabolic pathway analysis showed that indoles metabolism and flavonoids metabolism are closely related to wine varieties. Based on the differential compounds, OPLS-DA models could identify external validation wine samples with a total correct rate of 90.9 % in positive ionization mode and 100 % in negative ionization mode. This study indicated that the developed untargeted metabolomics method based on UHPLC-QTOF-MS is a potential tool to identify the varieties of Chinese red wines.


Subject(s)
Vitis , Wine , Humans , Vitis/chemistry , Wine/analysis , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , China , Indoles
4.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37374792

ABSTRACT

Because of rapid heating, cooling, and solidification during metal additive manufacturing (AM), the resulting products exhibit strong anisotropy and are at risk of quality problems from metallurgical defects. The defects and anisotropy affect the fatigue resistance and material properties, including mechanical, electrical, and magnetic properties, which limit the applications of the additively manufactured components in the field of engineering. In this study, the anisotropy of laser power bed fusion 316L stainless steel components was first measured by conventional destructive approaches using metallographic methods, X-ray diffraction (XRD), and electron backscatter diffraction (EBSD). Then, anisotropy was also evaluated by ultrasonic nondestructive characterization using the wave speed, attenuation, and diffuse backscatter results. The results from the destructive and nondestructive methods were compared. The wave speed fluctuated in a small range, while the attenuation and diffuse backscatter results were varied depending on the build direction. Furthermore, a laser power bed fusion 316L stainless steel sample with a series of artificial defects along the build direction was investigated via laser ultrasonic testing, which is more commonly used for AM defect detection. The corresponding ultrasonic imaging was improved with the synthetic aperture focusing technique (SAFT), which was found to be in good agreement with the results from the digital radiograph (DR). The outcomes of this study provide additional information for anisotropy evaluation and defect detection for improving the quality of additively manufactured products.

5.
Front Pharmacol ; 14: 1124845, 2023.
Article in English | MEDLINE | ID: mdl-36909184

ABSTRACT

Background: Major depression is one of the most common psychiatric disorders worldwide, inflicting suffering, significant reduction in life span, and financial burdens on families and society. Mounting evidence implicates that exposure to chronic stress can induce the dysregulation of the immune system, and the activation of brain-resident innate immune cells, microglia, leading to depression-like symptoms. However, the specific mechanisms need to be further elucidated. Method: Animal models of depression were established by chronic restraint stress (CRS), and depression-like behavior was assessed by sucrose preference test (SPT), open field test (OFT), tail suspension test (TST) and forced swimming test (FST). Microglial activation was visualized by immunofluorescent and immunohistochemical staining, and microglial morphological changes were further analyzed by skeleton analysis. The levels of inflammatory cytokines were detected by western blotting and qPCR. Result: Microglial Dlg1 knockout ameliorates CRS-induced mice depression-like behavior. In contrast to the effect of Dlg1 in the LPS-induced mouse model, Dlg1 knockout had little effect on microglial density, but significantly decreased the number of activated microglia and reversed microglia morphological changes in mice challenged with CRS. Moreover, the upregulation of inflammatory cytokines following CRS exposure was partially reversed by Dlg1 deletion. Conclusion: Our study provides the evidence that Dlg1 ablation in microglia remarkedly reverses microglial activation and depression-like behavior in mice exposed to CRS, implicating a potential target for the treatment of clinical depression.

6.
Spectrochim Acta A Mol Biomol Spectrosc ; 265: 120392, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34547686

ABSTRACT

In this work, nitrogen doped carbon dots (NCDs) were synthesized through one step hydrothermal reaction using citric acid and ethylenediamine as precursors. The prepared NCDs exhibit high quantum yield of 67.4%, good stability, excellent selectivity and sensitivity. It was found that the NCDs have potential as a fluorescence sensor for the detection of Hg2+. Under optimal conditions, good linearity between the change in NCDs fluorescence intensity and Hg2+ concentration was obtained in the range of 0.3 to 2.0 µM with a detection limit at 0.24 µM. The possible detection mechanism was static quenching of NCDs by Hg2+. The established method was successfully applied to the determination of Hg2+ in beverage samples. The results indicated that the NCDs-based sensor has potential for detection of Hg2+ in real beverage sample.


Subject(s)
Mercury , Quantum Dots , Beverages , Carbon , Fluorescent Dyes , Limit of Detection , Mercury/analysis , Nitrogen , Spectrometry, Fluorescence
7.
Neurosci Bull ; 37(12): 1671-1682, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34490521

ABSTRACT

Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K+ channels, which are reported to regulate the activation of microglia. However, little is known about the role of Dlg1 in microglia and the maintenance of central nervous system homeostasis. In this study, we found that Dlg1 knockdown suppressed lipopolysaccharide (LPS)-induced inflammation by down-regulating the activation of nuclear factor-κB signaling and the mitogen-activated protein kinase pathway in microglia. Moreover, using an inducible Dlg1 microglia-specific knockout (Dlg1flox/flox; CX3CR1CreER) mouse line, we found that microglial Dlg1 knockout reduced the activation of microglia and alleviated the LPS-induced depression-like behavior. In summary, our results demonstrated that Dlg1 plays a critical role in microglial activation and thus provides a potential therapeutic target for the clinical treatment of depression.


Subject(s)
Lipopolysaccharides , Microglia , Animals , Depression/chemically induced , Inflammation , Lipopolysaccharides/toxicity , Mice , Mice, Inbred C57BL , Mice, Knockout , NF-kappa B , Neuroinflammatory Diseases
8.
J Neuroinflammation ; 17(1): 205, 2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32635937

ABSTRACT

BACKGROUND: Persistent inflammation dysregulation and cognitive decline have been associated with several trauma- and stress-related disorders such as posttraumatic stress disorder (PTSD) and anxiety disorder. Despite the abundant discoveries of neuroinflammation in such disorders, the underlying mechanisms still remain unclear. METHOD: Wild-type and Nlrp3-/- mice were exposed to the electric foot shocks in the contextual fear memory paradigm. Three hours after the electric foot shocks, activation of the NLRP3 inflammasome was investigated through immunoblotting and ELISA. Microglia were isolated and analyzed by quantitative real-time PCR. Hippocampal tissues were collected 3 h and 72 h after the electric foot shocks and subjected to RNA sequencing. MCC950 was administrated to mice via intraperitoneal (i.p.) injection. Interleukin-1 receptor antagonist (IL-ra) and interleukin-1ß (IL-1ß) were delivered via intracerebroventricular (i.c.v.) infusion. Contextual fear responses of mice were tested on 4 consecutive days (test days 1-4) starting at 48 h after the electric foot shocks. Anxiety-like behaviors were examined by elevated plus maze and open-field test. RESULTS: We demonstrated that, in the contextual fear memory paradigm, the NLRP3 inflammasome was activated 3 h after electric foot shocks. We also found an upregulation in toll-like receptor and RIG-I-like receptor signaling, and a decrease in postsynaptic density (PSD) related proteins, such as PSD95 and Shank proteins, in the hippocampus 72 h after the electric foot shocks, indicating an association between neuroinflammation and PSD protein loss after stress encounter. Meanwhile, Nlrp3 knockout could significantly prevent both neuroinflammation and loss of PSD-related proteins, suggesting a possible protective role of NLRP3 deletion during this process. For further studies, we demonstrated that both genetic knockout and pharmaceutical inhibition of the NLRP3 inflammasome remarkably enhanced the extinction of contextual fear memory and attenuated anxiety-like behavior caused by electric foot shocks. Moreover, cytokine IL-1ß administration inhibited the extinction of contextual fear memory. Meanwhile, IL-1ra significantly enhanced the extinction of contextual fear memory and attenuated anxiety-like behavior. CONCLUSION: Taken together, our data revealed the pivotal role of NLRP3 inflammasome activation in the regulation of fear memory and the development of PTSD and anxiety disorder, providing a novel target for the clinical treatment of such disorders.


Subject(s)
Fear/physiology , Fear/psychology , Memory/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Stress, Psychological/metabolism , Stress, Psychological/psychology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
9.
Int Immunopharmacol ; 52: 281-289, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28963941

ABSTRACT

Quercetin is regarded as a potential hepatoprotective agent in the treatment of acute liver injury. However, the underlying mechanism of how quercetin to protect against lipopolysaccharides/d-galactosamine (LPS/d-GalN) induced acute liver injury remains unclear. To investigate the mechanism, the antioxidative, anti-inflammatory and antiapoptotic responses were performed. The results showed that quercetin pretreatment improved the survival rate and substantially reduced the liver histopathological changes in mice. It also alleviated the hepatic damage and reduced the productions of oxidative markers induced by LPS/d-GalN. In addition, quercetin pretreatment significantly diminished the production of inflammatory cytokines, including TNF-α, IL-6 and IL-1ß, and inhibited the activation of the NF-κB and MAPK signaling pathways as well as the expression of apoptotic-related proteins induced by LPS/d-GalN. We found that the potential mechanism of this quercetin-induced protection is mainly mediated through its powerful antioxidative capacity, inhibition of hepatocyte apoptosis and suppression of inflammatory cytokines through the IKK/NF-κB and MAPK signaling pathways. Thus, quercetin shows a promising therapeutic effect on acute liver injury in mice.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Chemical and Drug Induced Liver Injury/drug therapy , Liver/physiology , NF-kappa B/metabolism , Quercetin/therapeutic use , Animals , Cytokines/metabolism , Cytoprotection , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Galactosamine/administration & dosage , Inflammation Mediators/metabolism , Lipopolysaccharides/administration & dosage , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Oxidative Stress/drug effects , Signal Transduction
10.
Biochem Cell Biol ; 95(4): 510-516, 2017 08.
Article in English | MEDLINE | ID: mdl-28376312

ABSTRACT

VgR, a member of the LDLR family, functions to transport vitellogenin into the ovaries to protome ovarian growth and embryonic development. In insects, the only widely accepted ligand of VgR is Vg. Recently, BmVgR has been shown to interact with BmSP1 in vitro. Therefore, in this study, we evaluated whether BmVgR could transport BmSP1 into certain cells. Although BmVgR could combine with BmVg and BmSP1, BmVgR did not affect the amount of BmSP1 taken up by Sf9 cells. Parallel immunofluorescence showed that most BmVg and BmVgR were localized in the inner oocyte membrane, showing tissue localization similar to that of BmVg labeled with pHrodo Red absorbed by the ovaries on day 2 of pupation. Although BmSP1 showed localization similar to BmVgR during the same phase, little BmSP1 was present in the ovary. Additionally, BmSP1 did not exist in ovaries when the ovaries contained BmVgR on day 5 of pupation, suggesting that BmSP1 in the ovaries was not endocytosed by BmVgR. In summary, BmVgR could facilitate uptake of BmVg by developing oocytes, but did not modulate in the transport of BmSP1.


Subject(s)
Bombyx/cytology , Bombyx/metabolism , Egg Proteins/metabolism , Endocytosis , Hemolymph/metabolism , Insect Proteins/metabolism , Receptors, Cell Surface/metabolism , Animals , Female , Insect Proteins/genetics
11.
Acta Biomater ; 10(12): 4947-4955, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24980060

ABSTRACT

Natural silk fiber spun by the silkworm Bombyx mori is widely used not only for textile materials, but also for biofunctional materials. In the present study, we genetically engineered an advanced silk material, named hSFSV, using a transgenic silkworm, in which the recombinant human acidic fibroblast growth factor (hFGF1) protein was specifically synthesized in the middle silk gland and secreted into the sericin layer to surround the silk fiber using our previously optimized sericin1 expression system. The content of the recombinant hFGF1 in the hSFSV silk was estimated to be approximate 0.07% of the cocoon shell weight. The mechanical properties of hSFSV raw silk fiber were enhanced slightly compared to those of the wild-type raw silk fiber, probably due to the presence of the recombinant of hFGF1 in the sericin layer. Remarkably, the hSFSV raw silk significantly stimulated the cell growth and proliferation of NIH/3T3 mouse embryonic fibroblast cells, suggesting that the mitogenic activity of recombinant hFGF1 was well maintained and functioned in the sericin layer of hSFSV raw silk. These results show that the genetically engineered raw silk hSFSV could be used directly as a fine biomedical material for mass application. In addition, the strategy whereby functional recombinant proteins are expressed in the sericin layer of silk might be used to create more genetically engineered silks with various biofunctions and applications.


Subject(s)
Biocompatible Materials/chemistry , Bombyx/physiology , Cell Proliferation/physiology , Fibroblast Growth Factor 1/metabolism , Genetic Enhancement/methods , Silk/physiology , Animals , Animals, Genetically Modified , Fibroblast Growth Factor 1/genetics , Humans , Mice , NIH 3T3 Cells , Protein Engineering/methods , Recombinant Proteins/metabolism
12.
Biochim Biophys Acta ; 1840(9): 2674-84, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24861733

ABSTRACT

BACKGROUND: Vitellogenin (Vg) is synthesized in the fat body of the female silkworm Bombyx mori and transported to the oocyte as a source of nutrition for embryo development. It is well known that ecdysone regulates physiological, developmental and behavioral events in silkworm. However, it is still not clear how the ecdysone regulates B. mori Vg (BmVg) transcription. METHODS: Electrophoretic mobility shift assay (EMSA) and cell transfection assay were used to reveal whether BmBrC-Z2 is involved in regulating BmVg transcription. RNAi was employed to illustrate the function of BmBrC-Z2 in the silkworm egg formation and development. RESULTS: (1) The transcription of BmVg can be induced by ecdysone in the female fat body. (2) Three putative BrC-Z2 cis-response elements were mapped to regions flanking the BmVg gene. (3) BmBrC-Z2 required direct binding to the cis-response elements on the BmVg promoter. (4) Over-expression of three BmBrC isoforms in the cell line showed that only BmBrC-Z2 could induce the BmVg promoter activity. (5) RNA interference (RNAi) of BmBrC-Z2 in female remarkably reduced BmVg synthesis and led to destructive affection on egg formation. The dsRNA of BmBrC-Z2 treated moths laid fewer and whiter eggs compared to the control. CONCLUSIONS: BmBrC-Z2 transported the ecdysone signal then regulated BmVg transcription directly to control vitellogenesis and egg formation in the silkworm. GENERAL SIGNIFICANCE: The results of this study revealed that BmBrC-Z2 as a key factor to mediate ecdysone regulates reproduction in the silkworm.


Subject(s)
Bombyx/metabolism , Insect Proteins/biosynthesis , Ovum/metabolism , Transcription Factors/metabolism , Transcription, Genetic/physiology , Vitellogenesis/physiology , Vitellogenins/biosynthesis , Animals , Bombyx/genetics , Ecdysone/genetics , Ecdysone/metabolism , Female , Insect Proteins/genetics , Response Elements/physiology , Transcription Factors/genetics , Vitellogenins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...