Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Eur J Neurosci ; 59(1): 101-118, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37724707

ABSTRACT

The pleasurable urge to move to music (PLUMM) activates motor and reward areas of the brain and is thought to be driven by predictive processes. Dopamine in motor and limbic networks is implicated in beat-based timing and music-induced pleasure, suggesting a central role of basal ganglia (BG) dopaminergic systems in PLUMM. This study tested this hypothesis by comparing PLUMM in participants with Parkinson's disease (PD), age-matched controls, and young controls. Participants listened to musical sequences with varying rhythmic and harmonic complexity (low, medium and high), and rated their experienced pleasure and urge to move to the rhythm. In line with previous results, healthy younger participants showed an inverted U-shaped relationship between rhythmic complexity and ratings, with preference for medium complexity rhythms, while age-matched controls showed a similar, but weaker, inverted U-shaped response. Conversely, PD showed a significantly flattened response for both the urge to move and pleasure. Crucially, this flattened response could not be attributed to differences in rhythm discrimination and did not reflect an overall decrease in ratings. For harmonic complexity, PD showed a negative linear pattern for both the urge to move and pleasure while healthy age-matched controls showed the same pattern for pleasure and an inverted U for the urge to move. This contrasts with the pattern observed in young healthy controls in previous studies, suggesting that both healthy aging and PD also influence affective responses to harmonic complexity. Together, these results support the role of dopamine within cortico-striatal circuits in the predictive processes that form the link between the perceptual processing of rhythmic patterns and the affective and motor responses to rhythmic music.


Subject(s)
Music , Parkinson Disease , Humans , Parkinson Disease/psychology , Music/psychology , Dopamine , Auditory Perception/physiology , Brain
2.
Front Psychol ; 14: 1175682, 2023.
Article in English | MEDLINE | ID: mdl-38034280

ABSTRACT

Predictability plays an important role in the experience of musical pleasure. By leveraging expectations, music induces pleasure through tension and surprise. However, musical predictions draw on both prior knowledge and immediate context. Similarly, musical pleasure, which has been shown to depend on predictability, may also vary relative to the individual and context. Although research has demonstrated the influence of both long-term knowledge and stimulus features in influencing expectations, it is unclear how perceptions of a melody are influenced by comparisons to other music pieces heard in the same context. To examine the effects of context we compared how listeners' judgments of two distinct sets of stimuli differed when they were presented alone or in combination. Stimuli were excerpts from a repertoire of Western music and a set of experimenter created melodies. Separate groups of participants rated liking and predictability for each set of stimuli alone and in combination. We found that when heard together, the Repertoire stimuli were more liked and rated as less predictable than if they were heard alone, with the opposite pattern being observed for the Experimental stimuli. This effect was driven by a change in ratings between the Alone and Combined conditions for each stimulus set. These findings demonstrate a context-based shift of predictability ratings and derived pleasure, suggesting that judgments stem not only from the physical properties of the stimulus, but also vary relative to other options available in the immediate context.

3.
Hum Brain Mapp ; 44(12): 4512-4522, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37326147

ABSTRACT

A body of current evidence suggests that there is a sensitive period for musical training: people who begin training before the age of seven show better performance on tests of musical skill, and also show differences in brain structure-especially in motor cortical and cerebellar regions-compared with those who start later. We used support vector machine models-a subtype of supervised machine learning-to investigate distributed patterns of structural differences between early-trained (ET) and late-trained (LT) musicians and to better understand the age boundaries of the sensitive period for early musicianship. After selecting regions of interest from the cerebellum and cortical sensorimotor regions, we applied recursive feature elimination with cross-validation to produce a model which optimally and accurately classified ET and LT musicians. This model identified a combination of 17 regions, including 9 cerebellar and 8 sensorimotor regions, and maintained a high accuracy and sensitivity (true positives, i.e., ET musicians) without sacrificing specificity (true negatives, i.e., LT musicians). Critically, this model-which defined ET musicians as those who began their training before the age of 7-outperformed all other models in which age of start was earlier or later (between ages 5-10). Our model's ability to accurately classify ET and LT musicians provides additional evidence that musical training before age 7 affects cortico-cerebellar structure in adulthood, and is consistent with the hypothesis that connected brain regions interact during development to reciprocally influence brain and behavioral maturation.


Subject(s)
Motor Cortex , Music , Humans , Child , Brain , Cerebellum/diagnostic imaging
4.
PLoS One ; 18(2): e0281057, 2023.
Article in English | MEDLINE | ID: mdl-36730271

ABSTRACT

The inverted U hypothesis in music predicts that listeners prefer intermediate levels of complexity. However, the shape of the liking response to harmonic complexity and the effect of musicianship remains unclear. Here, we tested whether the relationship between liking and harmonic complexity in single chords shows an inverted U shape and whether this U shape is different for musicians and non-musicians. We recorded these groups' liking ratings for four levels of harmonic complexity, indexed by their level of acoustic roughness, as well as several measures of inter-individual difference. Results showed that there is an inverted U-shaped relationship between harmonic complexity and liking in both musicians and non-musicians, but that the shape of the U is different for the two groups. Non-musicians' U is more left-skewed, with peak liking for low harmonic complexity, while musicians' U is more right-skewed, with highest ratings for medium and low complexity. Furthermore, musicians who showed greater liking for medium compared to low complexity chords reported higher levels of active musical engagement and higher levels of openness to experience. This suggests that a combination of practical musical experience and personality is reflected in musicians' inverted U-shaped preference response to harmonic complexity in chords.


Subject(s)
Music , Emotions , Acoustics , Personality , Acoustic Stimulation/methods
5.
Brain Struct Funct ; 227(1): 407-419, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34657166

ABSTRACT

Adult abilities in complex cognitive domains such as music appear to depend critically on the age at which training or experience begins, and relevant experience has greater long-term effects during periods of peak maturational change. Previous work has shown that early trained musicians (ET; < age 7) out-perform later-trained musicians (LT; > age 7) on tests of musical skill, and also have larger volumes of the ventral premotor cortex (vPMC) and smaller volumes of the cerebellum. These cortico-cerebellar networks mature and function in relation to one another, suggesting that early training may promote coordinated developmental plasticity. To test this hypothesis, we examined structural covariation between cerebellar volume and cortical thickness (CT) in sensorimotor regions in ET and LT musicians and non-musicians (NMs). Results show that ETs have smaller volumes in cerebellar lobules connected to sensorimotor cortices, while both musician groups had greater cortical thickness in right pre-supplementary motor area (SMA) and right PMC compared to NMs. Importantly, early musical training had a specific effect on structural covariance between the cerebellum and cortex: NMs showed negative correlations between left lobule VI and right pre-SMA and PMC, but this relationship was reduced in ET musicians. ETs instead showed a significant negative correlation between vermal IV and right pre-SMA and dPMC. Together, these results suggest that early musical training has differential impacts on the maturation of cortico-cerebellar networks important for optimizing sensorimotor performance. This conclusion is consistent with the hypothesis that connected brain regions interact during development to reciprocally influence brain and behavioral maturation.


Subject(s)
Motor Cortex , Music , Brain , Brain Mapping , Cerebellum/diagnostic imaging , Magnetic Resonance Imaging
6.
Curr Top Behav Neurosci ; 53: 167-188, 2022.
Article in English | MEDLINE | ID: mdl-34435343

ABSTRACT

Adult ability in complex cognitive domains, including music, is commonly thought of as the product of gene-environment interactions, where genetic predispositions influence and are modulated by experience, resulting in the final phenotypic expression. Recently, however, the important contribution of maturation to gene-environment interactions has become better understood. Thus, the timing of exposure to specific experience, such as music training, has been shown to produce long-term impacts on adult behaviour and the brain. Work from our lab and others shows that musical training before the ages of 7-9 enhances performance on musical tasks and modifies brain structure and function, sometimes in unexpected ways. The goal of this paper is to present current evidence for sensitive period effects for musical training in the context of what is known about brain maturation and to present a framework that integrates genetic, environmental and maturational influences on the development of musical skill. We believe that this framework can also be applied more broadly to understanding how predispositions, brain development and experience interact.


Subject(s)
Music , Brain
7.
Brain Sci ; 11(5)2021 May 20.
Article in English | MEDLINE | ID: mdl-34065395

ABSTRACT

Music-supported therapy (MST) follows the best practice principles of stroke rehabilitation and has been proven to instigate meaningful enhancements in motor recovery post-stroke. The existing literature has established that the efficacy and specificity of MST relies on the reinforcement of auditory-motor functional connectivity in related brain networks. However, to date, no study has attempted to evaluate the underlying cortical network nodes that are key to the efficacy of MST post-stroke. In this case series, we evaluated changes in connectivity within the auditory-motor network and changes in upper extremity function following a 3-week intensive piano training in two stroke survivors presenting different levels of motor impairment. Connectivity was assessed pre- and post-training in the α- and the ß-bands within the auditory-motor network using magnetoencephalography while participants were passively listening to a standardized melody. Changes in manual dexterity, grip strength, movement coordination, and use of the upper extremity were also documented in both stroke survivors. After training, an increase in the clinical measures was accompanied by enhancements in connectivity between the auditory and motor network nodes for both the α- and the ß-bands, especially in the affected hemisphere. These neurophysiological changes associated with the positive effects of post-stroke MST on motor outcomes delineate a path for a larger scale clinical trial.

8.
Neuroimage ; 237: 118128, 2021 08 15.
Article in English | MEDLINE | ID: mdl-33989814

ABSTRACT

Many everyday tasks share high-level sensory goals but differ in the movements used to accomplish them. One example of this is musical pitch regulation, where the same notes can be produced using the vocal system or a musical instrument controlled by the hands. Cello playing has previously been shown to rely on brain structures within the singing network for performance of single notes, except in areas related to primary motor control, suggesting that the brain networks for auditory feedback processing and sensorimotor integration may be shared (Segado et al. 2018). However, research has shown that singers and cellists alike can continue singing/playing in tune even in the absence of auditory feedback (Chen et al. 2013, Kleber et al. 2013), so different paradigms are required to test feedback monitoring and control mechanisms. In singing, auditory pitch feedback perturbation paradigms have been used to show that singers engage a network of brain regions including anterior cingulate cortex (ACC), anterior insula (aINS), and intraparietal sulcus (IPS) when compensating for altered pitch feedback, and posterior superior temporal gyrus (pSTG) and supramarginal gyrus (SMG) when ignoring it (Zarate et al. 2005, 2008). To determine whether the brain networks for cello playing and singing directly overlap in these sensory-motor integration areas, in the present study expert cellists were asked to compensate for or ignore introduced pitch perturbations when singing/playing during fMRI scanning. We found that cellists were able to sing/play target tones, and compensate for and ignore introduced feedback perturbations equally well. Brain activity overlapped for singing and playing in IPS and SMG when compensating, and pSTG and dPMC when ignoring; differences between singing/playing across all three conditions were most prominent in M1, centered on the relevant motor effectors (hand, larynx). These findings support the hypothesis that pitch regulation during cello playing relies on structures within the singing network and suggests that differences arise primarily at the level of forward motor control.


Subject(s)
Auditory Perception/physiology , Cerebral Cortex/physiology , Motor Activity/physiology , Music , Psychomotor Performance/physiology , Singing , Adult , Brain Mapping , Cerebral Cortex/diagnostic imaging , Feedback, Sensory/physiology , Female , Humans , Magnetic Resonance Imaging , Male , Pitch Perception/physiology
9.
Neuroimage ; 229: 117759, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33454403

ABSTRACT

The mismatch negativity (MMN) is an event related brain potential (ERP) elicited by unpredicted sounds presented in a sequence of repeated auditory stimuli. The neural sources of the MMN have been previously attributed to a fronto-temporo-parietal network which crucially overlaps with the so-called auditory dorsal stream, involving inferior and middle frontal, inferior parietal, and superior and middle temporal regions. These cortical areas are structurally connected by the arcuate fasciculus (AF), a three-branch pathway supporting the feedback-feedforward loop involved in auditory-motor integration, auditory working memory, storage of acoustic templates, as well as comparison and update of those templates. Here, we characterized the individual differences in the white-matter macrostructural properties of the AF and explored their link to the electrophysiological marker of passive change detection gathered in a melodic multifeature MMN-EEG paradigm in 26 healthy young adults without musical training. Our results show that left fronto-temporal white-matter connectivity plays an important role in the pre-attentive detection of rhythm modulations within a melody. Previous studies have shown that this AF segment is also critical for language processing and learning. This strong coupling between structure and function in auditory change detection might be related to life-time linguistic (and possibly musical) exposure and experiences, as well as to timing processing specialization of the left auditory cortex. To the best of our knowledge, this is the first time in which the relationship between neurophysiological (EEG) and brain white-matter connectivity indexes using DTI-tractography are studied together. Thus, the present results, although still exploratory, add to the existing evidence on the importance of studying the constraints imposed on cognitive functions by the underlying structural connectivity.


Subject(s)
Attention/physiology , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Individuality , Music/psychology , White Matter/diagnostic imaging , White Matter/physiology , Acoustic Stimulation/methods , Electroencephalography/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/diagnostic imaging , Nerve Net/physiology , Young Adult
10.
Neuroimage ; 213: 116689, 2020 06.
Article in English | MEDLINE | ID: mdl-32119984

ABSTRACT

Music and language engage the dorsal auditory pathway, linked by the arcuate fasciculus (AF). Sustained practice in these activities can modify brain structure, depending on length of experience but also age of onset (AoO). To study the impact of early experience on brain structure we manually dissected the AF in bilinguals with and without music training (MT) who differed in the AoO of their second language (L2), or MT. We found the usual left-greater-than-right asymmetry in the volume of the long segment (LS) of the AF across all groups. However, simultaneous exposure to two languages from birth enhanced this leftward asymmetry, while early start of MT (≤7) enhanced the right LS macrostructure, reducing the normative asymmetry. Thus, immersive exposure to an L2 in the first year of life can produce long-term plastic effects on the left LS, which is considered to be largely under genetic control, while deliberate music training in early childhood alters the right LS, whose structure appears more open to experience. These findings show that AoO of specific experience plays a key role in a complex gene-environment interaction model where normative brain maturation is differentially impacted by diverse intensive auditory-motor experiences at different points during development.


Subject(s)
Auditory Pathways/anatomy & histology , Brain/anatomy & histology , Efferent Pathways/anatomy & histology , Multilingualism , Music , Adolescent , Adult , Auditory Pathways/physiology , Brain/physiology , Child , Child, Preschool , Diffusion Tensor Imaging , Efferent Pathways/physiology , Female , Humans , Learning/physiology , Male , Neuronal Plasticity/physiology , Young Adult
11.
Neuroimage ; 214: 116768, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32217163

ABSTRACT

The sensation of groove has been defined as the pleasurable desire to move to music, suggesting that both motor timing and reward processes are involved in this experience. Although many studies have investigated rhythmic timing and musical reward separately, none have examined whether the associated cortical and subcortical networks are engaged while participants listen to groove-based music. In the current study, musicians and non-musicians listened to and rated experimentally controlled groove-based stimuli while undergoing functional magnetic resonance imaging. Medium complexity rhythms elicited higher ratings of pleasure and wanting to move and were associated with activity in regions linked to beat perception and reward, as well as prefrontal and parietal regions implicated in generating and updating stimuli-based expectations. Activity in basal ganglia regions of interest, including the nucleus accumbens, caudate and putamen, was associated with ratings of pleasure and wanting to move, supporting their important role in the sensation of groove. We propose a model in which different cortico-striatal circuits interact to support the mechanisms underlying groove, including internal generation of the beat, beat-based expectations, and expectation-based affect. These results show that the sensation of groove is supported by motor and reward networks in the brain and, along with our proposed model, suggest that the basal ganglia are crucial nodes in networks that interact to generate this powerful response to music.


Subject(s)
Auditory Perception/physiology , Basal Ganglia/physiology , Dancing , Music , Pleasure/physiology , Reward , Acoustic Stimulation , Adult , Brain Mapping , Female , Humans , Magnetic Resonance Imaging , Male , Motivation/physiology , Periodicity
12.
Brain Struct Funct ; 224(9): 3229-3246, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31620887

ABSTRACT

Long-term motor training, such as dance or gymnastics, has been associated with increased diffusivity and reduced fiber coherence in regions including the corticospinal tract. Comparisons between different types of motor experts suggest that experience might result in specific structural changes related to the trained effectors (e.g., hands or feet). However, previous studies have not segregated the descending motor pathways from different body-part representations in motor cortex (M1). Further, most previous diffusion tensor imaging studies used whole-brain analyses based on a single tensor, which provide poor information about regions where multiple white matter (WM) tracts cross. Here, we used multi-tensor probabilistic tractography to investigate the specific components of the descending motor pathways in well-matched groups of dancers, musicians and controls. To this aim, we developed a procedure to identify the WM regions below the motor representations of the head, hand, trunk and leg that served as seeds for tractography. Dancers showed increased radial diffusivity (RD) in comparison with musicians, in descending motor pathways from all the regions, particularly in the right hemisphere, whereas musicians had increased fractional anisotropy (FA) in the hand and the trunk/arm motor tracts. Further, dancers showed larger volumes compared to both other groups. Finally, we found negative correlations between RD and FA with the age of start of dance or music training, respectively, and between RD and performance on a melody task, and positive correlations between RD and volume with performance on a whole-body dance task. These findings suggest that different types of training might have different effects on brain structure, likely because dancers must coordinate movements of the entire body, whereas musicians focus on fewer effectors.


Subject(s)
Brain/anatomy & histology , Brain/physiology , Motor Skills/physiology , Pyramidal Tracts/anatomy & histology , Pyramidal Tracts/physiology , Adolescent , Adult , Dancing , Diffusion Tensor Imaging , Female , Humans , Image Processing, Computer-Assisted , Male , Music , Neural Pathways/anatomy & histology , Neural Pathways/physiology , Professional Competence , White Matter/anatomy & histology , White Matter/physiology , Young Adult
13.
PLoS Biol ; 17(6): e3000293, 2019 06.
Article in English | MEDLINE | ID: mdl-31158227

ABSTRACT

Many animals can encode temporal intervals and use them to plan their actions, but only humans can flexibly extract a regular beat from complex patterns, such as musical rhythms. Beat-based timing is hypothesized to rely on the integration of sensory information with temporal information encoded in motor regions such as the medial premotor cortex (MPC), but how beat-based timing might be encoded in neuronal populations is mostly unknown. Gámez and colleagues show that the MPC encodes temporal information via a population code visible as circular trajectories in state space; these patterns may represent precursors to more-complex skills such as beat-based timing.


Subject(s)
Motor Cortex , Animals , Humans , Neurons , Reaction Time , Time
14.
PLoS One ; 14(4): e0216119, 2019.
Article in English | MEDLINE | ID: mdl-31022272

ABSTRACT

Studies with adult musicians show that beginning lessons before age seven is associated with better performance on musical tasks and enhancement in auditory and motor brain regions. It is hypothesized that early training interacts with periods of heightened neural development to promote greater plasticity and better learning and performance later in life. However, we do not know whether such effects can be observed in childhood. Moreover, we do not know the degree to which such effects are related to training, or whether early training has different effects on particular musical skills depending on their cognitive, perceptual or motor requirements. To address these questions, we compared groups of child musicians who had started lessons earlier or later on age-normed tests of rhythm synchronization and melody discrimination. We also matched for age, years of experience, working memory and global cognitive ability. Results showed that children who started early performed better on simple melody discrimination and that scores on this task were predicted by both age of start (AoS) and cognitive ability. There was no effect of AoS for the more complex rhythm or transposed melody tasks, but these scores were significantly predicted by working memory ability, and for transposed melodies, by hours of weekly practice. These findings provide the first evidence that earlier AoS for music training in childhood results in enhancement of specific musical skills. Integrating these results with those for adult musicians, we hypothesize that early training has an immediate impact on simple melody discrimination skills that develop early, while more complex abilities, like synchronization and transposition require both further maturation and additional training.


Subject(s)
Cognition/physiology , Music , Acoustic Stimulation , Adolescent , Age Factors , Analysis of Variance , Child , Discrimination, Psychological , Humans , Task Performance and Analysis
15.
PLoS One ; 14(1): e0204539, 2019.
Article in English | MEDLINE | ID: mdl-30629596

ABSTRACT

The pleasurable desire to move to music, also known as groove, is modulated by rhythmic complexity. How the sensation of groove is influenced by other musical features, such as the harmonic complexity of individual chords, is less clear. To address this, we asked people with a range of musical experience to rate stimuli that varied in both rhythmic and harmonic complexity. Rhythm showed an inverted U-shaped relationship with ratings of pleasure and wanting to move, whereas medium and low complexity chords were rated similarly. Pleasure mediated the effect of harmony on wanting to move and high complexity chords attenuated the effect of rhythm on pleasure. We suggest that while rhythmic complexity is the primary driver, harmony, by altering emotional valence, modulates the attentional and temporal prediction processes that underlie rhythm perception. Investigation of the effects of musical training with both regression and group comparison showed that training increased the inverted U effect for harmony and rhythm, respectively. Taken together, this work provides important new information about how the prediction and entrainment processes involved in rhythm perception interact with musical pleasure.


Subject(s)
Auditory Perception/physiology , Music/psychology , Pleasure/physiology , Adolescent , Adult , Aged , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Young Adult
16.
Front Hum Neurosci ; 12: 373, 2018.
Article in English | MEDLINE | ID: mdl-30319377

ABSTRACT

Dancers and musicians differ in brain structure from untrained individuals. Structural covariance (SC) analysis can provide further insight into training-associated brain plasticity by evaluating interregional relationships in gray matter (GM) structure. The objectives of the present study were to compare SC of cortical thickness (CT) between expert dancers, expert musicians and untrained controls, as well as to examine the relationship between SC and performance on dance- and music-related tasks. A reduced correlation between CT in the left dorsolateral prefrontal cortex (DLPFC) and mean CT across the whole brain was found in the dancers compared to the controls, and a reduced correlation between these two CT measures was associated with higher performance on a dance video game task. This suggests that the left DLPFC is structurally decoupled in dancers and may be more strongly affected by local training-related factors than global factors in this group. This work provides a better understanding of structural brain connectivity and training-induced brain plasticity, as well as their interaction with behavior in dance and music.

17.
J Cogn Neurosci ; 30(11): 1657-1682, 2018 11.
Article in English | MEDLINE | ID: mdl-30156505

ABSTRACT

Humans must learn a variety of sensorimotor skills, yet the relative contributions of sensory and motor information to skill acquisition remain unclear. Here we compare the behavioral and neural contributions of perceptual learning to that of motor learning, and we test whether these contributions depend on the expertise of the learner. Pianists and nonmusicians learned to perform novel melodies on a piano during fMRI scanning in four learning conditions: listening (auditory learning), performing without auditory feedback (motor learning), performing with auditory feedback (auditory-motor learning), or observing visual cues without performing or listening (cue-only learning). Visual cues were present in every learning condition and consisted of musical notation for pianists and spatial cues for nonmusicians. Melodies were performed from memory with no visual cues and with auditory feedback (recall) five times during learning. Pianists showed greater improvements in pitch and rhythm accuracy at recall during auditory learning compared with motor learning. Nonmusicians demonstrated greater rhythm improvements at recall during auditory learning compared with all other learning conditions. Pianists showed greater primary motor response at recall during auditory learning compared with motor learning, and response in this region during auditory learning correlated with pitch accuracy at recall and with auditory-premotor network response during auditory learning. Nonmusicians showed greater inferior parietal response during auditory compared with auditory-motor learning, and response in this region correlated with pitch accuracy at recall. Results suggest an advantage for perceptual learning compared with motor learning that is both general and expertise-dependent. This advantage is hypothesized to depend on feedforward motor control systems that can be used during learning to transform sensory information into motor production.


Subject(s)
Auditory Perception/physiology , Learning/physiology , Motor Skills/physiology , Music , Psychomotor Performance/physiology , Acoustic Stimulation/methods , Brain/diagnostic imaging , Brain/physiology , Female , Humans , Magnetic Resonance Imaging/methods , Male , Music/psychology , Photic Stimulation/methods , Young Adult
18.
Front Neurosci ; 12: 351, 2018.
Article in English | MEDLINE | ID: mdl-29892211

ABSTRACT

This research uses an MR-Compatible cello to compare functional brain activation during singing and cello playing within the same individuals to determine the extent to which arbitrary auditory-motor associations, like those required to play the cello, co-opt functional brain networks that evolved for singing. Musical instrument playing and singing both require highly specific associations between sounds and movements. Because these are both used to produce musical sounds, it is often assumed in the literature that their neural underpinnings are highly similar. However, singing is an evolutionarily old human trait, and the auditory-motor associations used for singing are also used for speech and non-speech vocalizations. This sets it apart from the arbitrary auditory-motor associations required to play musical instruments. The pitch range of the cello is similar to that of the human voice, but cello playing is completely independent of the vocal apparatus, and can therefore be used to dissociate the auditory-vocal network from that of the auditory-motor network. While in the MR-Scanner, 11 expert cellists listened to and subsequently produced individual tones either by singing or cello playing. All participants were able to sing and play the target tones in tune (<50C deviation from target). We found that brain activity during cello playing directly overlaps with brain activity during singing in many areas within the auditory-vocal network. These include primary motor, dorsal pre-motor, and supplementary motor cortices (M1, dPMC, SMA),the primary and periprimary auditory cortices within the superior temporal gyrus (STG) including Heschl's gyrus, anterior insula (aINS), anterior cingulate cortex (ACC), and intraparietal sulcus (IPS), and Cerebellum but, notably, exclude the periaqueductal gray (PAG) and basal ganglia (Putamen). Second, we found that activity within the overlapping areas is positively correlated with, and therefore likely contributing to, both singing and playing in tune determined with performance measures. Third, we found that activity in auditory areas is functionally connected with activity in dorsal motor and pre-motor areas, and that the connectivity between them is positively correlated with good performance on this task. This functional connectivity suggests that the brain areas are working together to contribute to task performance and not just coincidently active. Last, our findings showed that cello playing may directly co-opt vocal areas (including larynx area of motor cortex), especially if musical training begins before age 7.

19.
Neuroimage ; 181: 252-262, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29929006

ABSTRACT

Music learning has received increasing attention in the last decades due to the variety of functions and brain plasticity effects involved during its practice. Most previous reports interpreted the differences between music experts and laymen as the result of training. However, recent investigations suggest that these differences are due to a combination of genetic predispositions with the effect of music training. Here, we tested the relationship of the dorsal auditory-motor pathway with individual behavioural differences in short-term music learning. We gathered structural neuroimaging data from 44 healthy non-musicians (28 females) before they performed a rhythm- and a melody-learning task during a single behavioural session, and manually dissected the arcuate fasciculus (AF) in both hemispheres. The macro- and microstructural organization of the AF (i.e., volume and FA) predicted the learning rate and learning speed in the musical tasks, but only in the right hemisphere. Specifically, the volume of the right anterior segment predicted the synchronization improvement during the rhythm task, the FA in the right long segment was correlated with the learning rate in the melody task, and the volume and FA of the right whole AF predicted the learning speed during the melody task. This is the first study finding a specific relation between different branches within the AF and rhythmic and melodic materials. Our results support the relevant function of the AF as the structural correlate of both auditory-motor transformations and the feedback-feedforward loop, and suggest a crucial involvement of the anterior segment in error-monitoring processes related to auditory-motor learning. These findings have implications for both the neuroscience of music field and second-language learning investigations.


Subject(s)
Auditory Pathways/anatomy & histology , Auditory Perception/physiology , Diffusion Tensor Imaging/methods , Efferent Pathways/anatomy & histology , Learning/physiology , Music , White Matter/anatomy & histology , Adult , Auditory Pathways/diagnostic imaging , Efferent Pathways/diagnostic imaging , Executive Function/physiology , Feedback , Female , Functional Laterality/physiology , Humans , Male , Time Perception/physiology , White Matter/diagnostic imaging , Young Adult
20.
Proc Natl Acad Sci U S A ; 115(26): E6056-E6064, 2018 06 26.
Article in English | MEDLINE | ID: mdl-29891670

ABSTRACT

The auditory and motor neural systems are closely intertwined, enabling people to carry out tasks such as playing a musical instrument whose mapping between action and sound is extremely sophisticated. While the dorsal auditory stream has been shown to mediate these audio-motor transformations, little is known about how such mapping emerges with training. Here, we use longitudinal training on a cello as a model for brain plasticity during the acquisition of specific complex skills, including continuous and many-to-one audio-motor mapping, and we investigate individual differences in learning. We trained participants with no musical background to play on a specially designed MRI-compatible cello and scanned them before and after 1 and 4 wk of training. Activation of the auditory-to-motor dorsal cortical stream emerged rapidly during the training and was similarly activated during passive listening and cello performance of trained melodies. This network activation was independent of performance accuracy and therefore appears to be a prerequisite of music playing. In contrast, greater recruitment of regions involved in auditory encoding and motor control over the training was related to better musical proficiency. Additionally, pre-supplementary motor area activity and its connectivity with the auditory cortex during passive listening before training was predictive of final training success, revealing the integrative function of this network in auditory-motor information processing. Together, these results clarify the critical role of the dorsal stream and its interaction with auditory areas in complex audio-motor learning.


Subject(s)
Auditory Cortex/physiology , Learning/physiology , Motor Cortex/physiology , Music , Nerve Net/physiology , Adult , Auditory Cortex/diagnostic imaging , Female , Humans , Magnetic Resonance Imaging , Male , Motor Cortex/diagnostic imaging , Nerve Net/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...