Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Light Sci Appl ; 7: 33, 2018.
Article in English | MEDLINE | ID: mdl-30839607

ABSTRACT

Traditionally accepted design paradigms dictate that only optically isotropic (cubic) crystal structures with high equilibrium solubilities of optically active ions are suitable for polycrystalline laser gain media. The restriction of symmetry is due to light scattering caused by randomly oriented anisotropic crystals, whereas the solubility problem arises from the need for sufficient active dopants in the media. These criteria limit material choices and exclude materials that have superior thermo-mechanical properties than state-of-the-art laser materials. Alumina (Al2O3) is an ideal example; it has a higher fracture strength and thermal conductivity than today's gain materials, which could lead to revolutionary laser performance. However, alumina has uniaxial optical proprieties, and the solubility of rare earths (REs) is two-to-three orders of magnitude lower than the dopant concentrations in typical RE-based gain media. We present new strategies to overcome these obstacles and demonstrate gain in a RE-doped alumina (Nd:Al2O3) for the first time. The key insight relies on tailoring the crystallite size to other important length scales-the wavelength of light and interatomic dopant distances, which minimize optical losses and allow successful Nd doping. The result is a laser gain medium with a thermo-mechanical figure of merit of R s~19,500 Wm-1 a 24-fold and 19,500-fold improvements over the high-energy-laser leaders Nd:YAG (R s~800 Wm-1) and Nd:Glass (R s~1 Wm-1), respectively. Moreover, the emission bandwidth of Nd:Al2O3 is broad: ~13 THz. The successful demonstration of gain and high bandwidth in a medium with superior R s can lead to the development of lasers with previously unobtainable high-peak powers, short pulses, tunability, and high-duty cycles.

2.
Adv Healthc Mater ; 6(21)2017 Nov.
Article in English | MEDLINE | ID: mdl-28766896

ABSTRACT

Therapeutic ultrasound can induce changes in tissues by means of thermal and nonthermal effects. It is proposed for treatment of some brain pathologies such as Alzheimer's, Parkinson's, Huntington's diseases, and cancer. However, cranium highly absorbs ultrasound reducing transmission efficiency. There are clinical applications of transcranial focused ultrasound and implantable ultrasound transducers proposed to address this problem. In this paper, biocompatible materials are proposed for replacing part of the cranium (cranial implants) based on low porosity polycrystalline 8 mol% yttria-stabilized-zirconia (8YSZ) ceramics as acoustic windows for brain therapy. In order to assess the viability of 8YSZ implants to effectively transmit ultrasound, various 8YSZ ceramics with different porosity are tested; their acoustic properties are measured; and the results are validated using finite element models simulating wave propagation to brain tissue through 8YSZ windows. The ultrasound attenuation is found to be linearly dependent on ceramics' porosity. Results for the nearly pore-free case indicate that 8YSZ is highly effective in transmitting ultrasound, with overall maximum transmission efficiency of ≈81%, compared to near total absorption of cranial bone. These results suggest that 8YSZ polycrystals could be suitable acoustic windows for ultrasound brain therapy at 1 MHz.


Subject(s)
Biocompatible Materials/chemistry , Brain Diseases/therapy , Ultrasonic Therapy , Yttrium/chemistry , Zirconium/chemistry , Animals , Biocompatible Materials/therapeutic use , Cattle , Finite Element Analysis , Male , Models, Biological , Porosity , Prostheses and Implants , Skull/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...