Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
Am J Hum Genet ; 110(8): 1343-1355, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37541188

ABSTRACT

Despite significant progress in unraveling the genetic causes of neurodevelopmental disorders (NDDs), a substantial proportion of individuals with NDDs remain without a genetic diagnosis after microarray and/or exome sequencing. Here, we aimed to assess the power of short-read genome sequencing (GS), complemented with long-read GS, to identify causal variants in participants with NDD from the National Institute for Health and Care Research (NIHR) BioResource project. Short-read GS was conducted on 692 individuals (489 affected and 203 unaffected relatives) from 465 families. Additionally, long-read GS was performed on five affected individuals who had structural variants (SVs) in technically challenging regions, had complex SVs, or required distal variant phasing. Causal variants were identified in 36% of affected individuals (177/489), and a further 23% (112/489) had a variant of uncertain significance after multiple rounds of re-analysis. Among all reported variants, 88% (333/380) were coding nuclear SNVs or insertions and deletions (indels), and the remainder were SVs, non-coding variants, and mitochondrial variants. Furthermore, long-read GS facilitated the resolution of challenging SVs and invalidated variants of difficult interpretation from short-read GS. This study demonstrates the value of short-read GS, complemented with long-read GS, in investigating the genetic causes of NDDs. GS provides a comprehensive and unbiased method of identifying all types of variants throughout the nuclear and mitochondrial genomes in individuals with NDD.


Subject(s)
Genome, Human , Neurodevelopmental Disorders , Humans , Genome, Human/genetics , Chromosome Mapping , Base Sequence , INDEL Mutation , Neurodevelopmental Disorders/genetics
2.
Front Genet ; 13: 888025, 2022.
Article in English | MEDLINE | ID: mdl-35571054

ABSTRACT

There is considerable variability in the susceptibility and progression for COVID-19 and it appears to be strongly correlated with age, gender, ethnicity and pre-existing health conditions. However, to our knowledge, cohort studies of COVID-19 in clinically vulnerable groups are lacking. Host genetics has also emerged as a major risk factor for COVID-19, and variation in the ACE2 receptor, which facilitates entry of the SARS-CoV-2 virus into the cell, has become a major focus of attention. Thus, we interrogated an ethnically diverse cohort of National Health Service (NHS) patients in the United Kingdom (United Kingdom) to assess the association between variants in the ACE2 locus and COVID-19 risk. We analysed whole-genome sequencing (WGS) data of 1,837 cases who were tested positive for SARS-CoV-2, and 37,207 controls who were not tested, from the UK's 100,000 Genomes Project (100KGP) for the presence of ACE2 coding variants and extract expression quantitative trait loci (eQTLs). We identified a splice site variant (rs2285666) associated with increased ACE2 expression with an overrepresentation in SARS-CoV-2 positive patients relative to 100KGP controls (p = 0.015), and in hospitalised European patients relative to outpatients in intra-ethnic comparisons (p = 0.029). We also compared the prevalence of 288 eQTLs, of which 23 were enriched in SARS-CoV-2 positive patients. The eQTL rs12006793 had the largest effect size (d = 0.91), which decreases ACE2 expression and is more prevalent in controls, thus potentially reducing the risk of COVID-19. We identified three novel nonsynonymous variants predicted to alter ACE2 function, and showed that three variants (p.K26R, p. H378R, p. Y515N) alter receptor affinity for the viral Spike (S) protein. Variant p. N720D, more prevalent in the European population (p < 0.001), potentially increases viral entry by affecting the ACE2-TMPRSS2 complex. The spectrum of genetic variants in ACE2 may inform risk stratification of COVID-19 patients and could partially explain the differences in disease susceptibility and severity among different ethnic groups.

3.
Blood ; 139(14): 2227-2239, 2022 04 07.
Article in English | MEDLINE | ID: mdl-35051265

ABSTRACT

The process of platelet production has so far been understood to be a 2-stage process: megakaryocyte maturation from hematopoietic stem cells followed by proplatelet formation, with each phase regulating the peripheral blood platelet count. Proplatelet formation releases into the bloodstream beads-on-a-string preplatelets, which undergo fission into mature platelets. For the first time, we show that preplatelet maturation is a third, tightly regulated, critical process akin to cytokinesis that regulates platelet count. We show that deficiency in cytokine receptor-like factor 3 (CRLF3) in mice leads to an isolated and sustained 25% to 48% reduction in the platelet count without any effect on other blood cell lineages. We show that Crlf3-/- preplatelets have increased microtubule stability, possibly because of increased microtubule glutamylation via the interaction of CRLF3 with key members of the Hippo pathway. Using a mouse model of JAK2 V617F essential thrombocythemia, we show that a lack of CRLF3 leads to long-term lineage-specific normalization of the platelet count. We thereby postulate that targeting CRLF3 has therapeutic potential for treatment of thrombocythemia.


Subject(s)
Blood Platelets , Thrombocythemia, Essential , Blood Platelets/metabolism , Humans , Megakaryocytes/metabolism , Microtubules , Platelet Count , Receptors, Cytokine , Thrombocythemia, Essential/drug therapy , Thrombopoiesis/genetics
4.
N Engl J Med ; 385(20): 1868-1880, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34758253

ABSTRACT

BACKGROUND: The U.K. 100,000 Genomes Project is in the process of investigating the role of genome sequencing in patients with undiagnosed rare diseases after usual care and the alignment of this research with health care implementation in the U.K. National Health Service. Other parts of this project focus on patients with cancer and infection. METHODS: We conducted a pilot study involving 4660 participants from 2183 families, among whom 161 disorders covering a broad spectrum of rare diseases were present. We collected data on clinical features with the use of Human Phenotype Ontology terms, undertook genome sequencing, applied automated variant prioritization on the basis of applied virtual gene panels and phenotypes, and identified novel pathogenic variants through research analysis. RESULTS: Diagnostic yields varied among family structures and were highest in family trios (both parents and a proband) and families with larger pedigrees. Diagnostic yields were much higher for disorders likely to have a monogenic cause (35%) than for disorders likely to have a complex cause (11%). Diagnostic yields for intellectual disability, hearing disorders, and vision disorders ranged from 40 to 55%. We made genetic diagnoses in 25% of the probands. A total of 14% of the diagnoses were made by means of the combination of research and automated approaches, which was critical for cases in which we found etiologic noncoding, structural, and mitochondrial genome variants and coding variants poorly covered by exome sequencing. Cohortwide burden testing across 57,000 genomes enabled the discovery of three new disease genes and 19 new associations. Of the genetic diagnoses that we made, 25% had immediate ramifications for clinical decision making for the patients or their relatives. CONCLUSIONS: Our pilot study of genome sequencing in a national health care system showed an increase in diagnostic yield across a range of rare diseases. (Funded by the National Institute for Health Research and others.).


Subject(s)
Genome, Human , Rare Diseases/genetics , Adolescent , Adult , Child , Child, Preschool , Family Characteristics , Female , Genetic Variation , Humans , Male , Middle Aged , Pilot Projects , Polymerase Chain Reaction , Rare Diseases/diagnosis , Sensitivity and Specificity , State Medicine , United Kingdom , Whole Genome Sequencing , Young Adult
5.
Vox Sang ; 116(7): 755-765, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33491795

ABSTRACT

BACKGROUND AND OBJECTIVES: Blood donors might develop iron deficiency as approximately 250 mg of iron is lost with every donation. Susceptibility to iron deficiency and low haemoglobin levels differs between individuals, which might be due to genetic variation. Therefore, the aim of this study was to investigate associations between single nucleotide polymorphisms (SNPs) and haemoglobin trajectories, haemoglobin levels and ferritin levels in blood donors. MATERIALS AND METHODS: In 2655 donors participating in the observational cohort study Donor InSight-III (2015-2017), haemoglobin and ferritin levels were measured in venous EDTA whole blood and plasma samples, respectively. Haemoglobin trajectories (stable/declining) were determined by fitting growth-mixture models on repeated pre-donation capillary haemoglobin measurements. Genotyping was done using the UK Biobank - version 2 Axiom Array. Single SNP analyses adopting an additive genetic model on imputed genetic variants were performed for haemoglobin trajectories, haemoglobin levels and ferritin levels. Conditional analyses identified independent SNPs. RESULTS: Twelve, twenty and twenty-four independent SNPs were associated with haemoglobin trajectories, haemoglobin levels and ferritin levels respectively (P < 1 x 10-5 ). Rs112016443 reached genome-wide significance for ferritin levels, which influences WDSUB1 expression. CONCLUSION: Rs112016443 was genome-wide significantly associated with ferritin levels in Dutch donors. Further validation studies are needed, as well as studies towards underlying mechanisms and predicting iron deficiency using SNPs.


Subject(s)
Anemia, Iron-Deficiency , Ferritins , Blood Donors , Ferritins/genetics , Hemoglobins/analysis , Humans , Iron
6.
Article in English | MEDLINE | ID: mdl-33320693

ABSTRACT

Background - Approximately 25% of patients with pulmonary arterial hypertension (PAH) have been found to harbor rare mutations in disease-causing genes. To identify missing heritability in PAH we integrated deep phenotyping with whole-genome sequencing data using Bayesian statistics. Methods - We analyzed 13,037 participants enrolled in the NIHR BioResource - Rare Diseases (NBR) study, of which 1,148 were recruited to the PAH domain. To test for genetic associations between genes and selected phenotypes of pulmonary hypertension (PH), we used the Bayesian rare-variant association method BeviMed. Results - Heterozygous, high impact, likely loss-of-function variants in the Kinase Insert Domain Receptor (KDR) gene were strongly associated with significantly reduced transfer coefficient for carbon monoxide (KCO, posterior probability (PP)=0.989) and older age at diagnosis (PP=0.912). We also provide evidence for familial segregation of a rare nonsense KDR variant with these phenotypes. On computed tomographic imaging of the lungs, a range of parenchymal abnormalities were observed in the five patients harboring these predicted deleterious variants in KDR. Four additional PAH cases with rare likely loss-of-function variants in KDR were independently identified in the US PAH Biobank cohort with similar phenotypic characteristics. Conclusions - The Bayesian inference approach allowed us to independently validate KDR, which encodes for the Vascular Endothelial Growth Factor Receptor 2 (VEGFR2), as a novel PAH candidate gene. Furthermore, this approach specifically associated high impact likely loss-of-function variants in the genetically constrained gene with distinct phenotypes. These findings provide evidence for KDR being a clinically actionable PAH gene and further support the central role of the vascular endothelium in the pathobiology of PAH.

7.
Cell ; 182(5): 1214-1231.e11, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888494

ABSTRACT

Blood cells play essential roles in human health, underpinning physiological processes such as immunity, oxygen transport, and clotting, which when perturbed cause a significant global health burden. Here we integrate data from UK Biobank and a large-scale international collaborative effort, including data for 563,085 European ancestry participants, and discover 5,106 new genetic variants independently associated with 29 blood cell phenotypes covering a range of variation impacting hematopoiesis. We holistically characterize the genetic architecture of hematopoiesis, assess the relevance of the omnigenic model to blood cell phenotypes, delineate relevant hematopoietic cell states influenced by regulatory genetic variants and gene networks, identify novel splice-altering variants mediating the associations, and assess the polygenic prediction potential for blood traits and clinical disorders at the interface of complex and Mendelian genetics. These results show the power of large-scale blood cell trait GWAS to interrogate clinically meaningful variants across a wide allelic spectrum of human variation.


Subject(s)
Genetic Predisposition to Disease/genetics , Multifactorial Inheritance/genetics , Female , Gene Regulatory Networks/genetics , Genome-Wide Association Study/methods , Hematopoiesis/genetics , Humans , Male , Phenotype , Polymorphism, Single Nucleotide/genetics
8.
Blood Adv ; 4(15): 3495-3506, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32750130

ABSTRACT

Each year, blood transfusions save millions of lives. However, under current blood-matching practices, sensitization to non-self-antigens is an unavoidable adverse side effect of transfusion. We describe a universal donor typing platform that could be adopted by blood services worldwide to facilitate a universal extended blood-matching policy and reduce sensitization rates. This DNA-based test is capable of simultaneously typing most clinically relevant red blood cell (RBC), human platelet (HPA), and human leukocyte (HLA) antigens. Validation was performed, using samples from 7927 European, 27 South Asian, 21 East Asian, and 9 African blood donors enrolled in 2 national biobanks. We illustrated the usefulness of the platform by analyzing antibody data from patients sensitized with multiple RBC alloantibodies. Genotyping results demonstrated concordance of 99.91%, 99.97%, and 99.03% with RBC, HPA, and HLA clinically validated typing results in 89 371, 3016, and 9289 comparisons, respectively. Genotyping increased the total number of antigen typing results available from 110 980 to >1 200 000. Dense donor typing allowed identification of 2 to 6 times more compatible donors to serve 3146 patients with multiple RBC alloantibodies, providing at least 1 match for 176 individuals for whom previously no blood could be found among the same donors. This genotyping technology is already being used to type thousands of donors taking part in national genotyping studies. Extraction of dense antigen-typing data from these cohorts provides blood supply organizations with the opportunity to implement a policy of genomics-based precision matching of blood.


Subject(s)
Blood Donors , Blood Transfusion , Genotype , Humans , Isoantibodies , Prospective Studies
10.
Eur J Hum Genet ; 28(11): 1486-1496, 2020 11.
Article in English | MEDLINE | ID: mdl-32686758

ABSTRACT

Disclosing secondary findings (SF) from genome sequencing (GS) can alert carriers to disease risk. However, evidence around variant-disease association and consequences of disclosure for individuals and healthcare services is limited. We report on the feasibility of an approach to identification of SF in inherited cardiac conditions (ICC) genes in participants in a rare disease GS study, followed by targeted clinical evaluation. Qualitative methods were used to explore behavioural and psychosocial consequences of disclosure. ICC genes were analysed in genome sequence data from 7203 research participants; a two-stage approach was used to recruit genotype-blind variant carriers and matched controls. Cardiac-focused medical and family history collection and genetic counselling were followed by standard clinical tests, blinded to genotype. Pathogenic ICC variants were identified in 0.61% of individuals; 20 were eligible for the present study. Four variant carriers and seven non-carrier controls participated. One variant carrier had a family history of ICC and was clinically affected; a second was clinically unaffected and had no relevant family history. One variant, in two unrelated participants, was subsequently reclassified as being of uncertain significance. Analysis of qualitative data highlights participant satisfaction with approach, willingness to follow clinical recommendations, but variable outcomes of relatives' engagement with healthcare services. In conclusion, when offered access to SF, many people choose not to pursue them. For others, disclosure of ICC SF in a specialist setting is valued and of likely clinical utility, and can be expected to identify individuals with, and without a phenotype.


Subject(s)
Genetic Counseling/psychology , Heart Defects, Congenital/genetics , Incidental Findings , Truth Disclosure , Adult , Aged , Feasibility Studies , Female , Genetic Counseling/methods , Genetic Testing/methods , Heart Defects, Congenital/diagnosis , Heart Defects, Congenital/psychology , Heterozygote , Humans , Male , Middle Aged , Patient Satisfaction , Phenotype
11.
Nature ; 583(7814): 90-95, 2020 07.
Article in English | MEDLINE | ID: mdl-32499645

ABSTRACT

Primary immunodeficiency (PID) is characterized by recurrent and often life-threatening infections, autoimmunity and cancer, and it poses major diagnostic and therapeutic challenges. Although the most severe forms of PID are identified in early childhood, most patients present in adulthood, typically with no apparent family history and a variable clinical phenotype of widespread immune dysregulation: about 25% of patients have autoimmune disease, allergy is prevalent and up to 10% develop lymphoid malignancies1-3. Consequently, in sporadic (or non-familial) PID genetic diagnosis is difficult and the role of genetics is not well defined. Here we address these challenges by performing whole-genome sequencing in a large PID cohort of 1,318 participants. An analysis of the coding regions of the genome in 886 index cases of PID found that disease-causing mutations in known genes that are implicated in monogenic PID occurred in 10.3% of these patients, and a Bayesian approach (BeviMed4) identified multiple new candidate PID-associated genes, including IVNS1ABP. We also examined the noncoding genome, and found deletions in regulatory regions that contribute to disease causation. In addition, we used a genome-wide association study to identify loci that are associated with PID, and found evidence for the colocalization of-and interplay between-novel high-penetrance monogenic variants and common variants (at the PTPN2 and SOCS1 loci). This begins to explain the contribution of common variants to the variable penetrance and phenotypic complexity that are observed in PID. Thus, using a cohort-based whole-genome-sequencing approach in the diagnosis of PID can increase diagnostic yield and further our understanding of the key pathways that influence immune responsiveness in humans.


Subject(s)
Primary Immunodeficiency Diseases/genetics , Whole Genome Sequencing , Actin-Related Protein 2-3 Complex/genetics , Bayes Theorem , Cohort Studies , Female , Genome-Wide Association Study , Humans , Male , Primary Immunodeficiency Diseases/diagnosis , Primary Immunodeficiency Diseases/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 2/genetics , RNA-Binding Proteins/genetics , Regulatory Sequences, Nucleic Acid/genetics , Suppressor of Cytokine Signaling 1 Protein/genetics , Transcription Factors/genetics
12.
Blood ; 136(17): 1907-1918, 2020 10 22.
Article in English | MEDLINE | ID: mdl-32573726

ABSTRACT

Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant vascular dysplasia. Care delivery for HHT patients is impeded by the need for laborious, repeated phenotyping and gaps in knowledge regarding the relationships between causal DNA variants in ENG, ACVRL1, SMAD4 and GDF2, and clinical manifestations. To address this, we analyzed DNA samples from 183 previously uncharacterized, unrelated HHT and suspected HHT cases using the ThromboGenomics high-throughput sequencing platform. We identified 127 rare variants across 168 heterozygous genotypes. Applying modified American College of Medical Genetics and Genomics Guidelines, 106 variants were classified as pathogenic/likely pathogenic and 21 as nonpathogenic (variant of uncertain significance/benign). Unlike the protein products of ACVRL1 and SMAD4, the extracellular ENG amino acids are not strongly conserved. Our inferences of the functional consequences of causal variants in ENG were therefore informed by the crystal structure of endoglin. We then compared the accuracy of predictions of the causal gene blinded to the genetic data using 2 approaches: subjective clinical predictions and statistical predictions based on 8 Human Phenotype Ontology terms. Both approaches had some predictive power, but they were insufficiently accurate to be used clinically, without genetic testing. The distributions of red cell indices differed by causal gene but not sufficiently for clinical use in isolation from genetic data. We conclude that parallel sequencing of the 4 known HHT genes, multidisciplinary team review of variant calls in the context of detailed clinical information, and statistical and structural modeling improve the prognostication and treatment of HHT.


Subject(s)
Genetic Association Studies , Mutation , Telangiectasia, Hereditary Hemorrhagic/genetics , Activin Receptors, Type II/chemistry , Activin Receptors, Type II/genetics , Cohort Studies , DNA Mutational Analysis/methods , Endoglin/chemistry , Endoglin/genetics , Female , Genetic Association Studies/methods , Genetic Predisposition to Disease , Genetic Testing/methods , Genomics/methods , Growth Differentiation Factor 2/chemistry , Growth Differentiation Factor 2/genetics , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Molecular , Phenotype , Retrospective Studies , Sequence Analysis, DNA/methods , Smad4 Protein/chemistry , Smad4 Protein/genetics , Telangiectasia, Hereditary Hemorrhagic/epidemiology , Telangiectasia, Hereditary Hemorrhagic/pathology
13.
J Am Soc Nephrol ; 31(2): 365-373, 2020 02.
Article in English | MEDLINE | ID: mdl-31919107

ABSTRACT

BACKGROUND: Primary membranoproliferative GN, including complement 3 (C3) glomerulopathy, is a rare, untreatable kidney disease characterized by glomerular complement deposition. Complement gene mutations can cause familial C3 glomerulopathy, and studies have reported rare variants in complement genes in nonfamilial primary membranoproliferative GN. METHODS: We analyzed whole-genome sequence data from 165 primary membranoproliferative GN cases and 10,250 individuals without the condition (controls) as part of the National Institutes of Health Research BioResource-Rare Diseases Study. We examined copy number, rare, and common variants. RESULTS: Our analysis included 146 primary membranoproliferative GN cases and 6442 controls who were unrelated and of European ancestry. We observed no significant enrichment of rare variants in candidate genes (genes encoding components of the complement alternative pathway and other genes associated with the related disease atypical hemolytic uremic syndrome; 6.8% in cases versus 5.9% in controls) or exome-wide. However, a significant common variant locus was identified at 6p21.32 (rs35406322) (P=3.29×10-8; odds ratio [OR], 1.93; 95% confidence interval [95% CI], 1.53 to 2.44), overlapping the HLA locus. Imputation of HLA types mapped this signal to a haplotype incorporating DQA1*05:01, DQB1*02:01, and DRB1*03:01 (P=1.21×10-8; OR, 2.19; 95% CI, 1.66 to 2.89). This finding was replicated by analysis of HLA serotypes in 338 individuals with membranoproliferative GN and 15,614 individuals with nonimmune renal failure. CONCLUSIONS: We found that HLA type, but not rare complement gene variation, is associated with primary membranoproliferative GN. These findings challenge the paradigm of complement gene mutations typically causing primary membranoproliferative GN and implicate an underlying autoimmune mechanism in most cases.


Subject(s)
Complement C3/immunology , Glomerulonephritis, Membranoproliferative/genetics , Whole Genome Sequencing , Complement C3 Nephritic Factor/analysis , Female , Glomerulonephritis, Membranoproliferative/etiology , HLA-DQ Antigens/genetics , HLA-DR Antigens/genetics , Humans , Male , Serogroup
14.
Hum Mutat ; 41(1): 277-290, 2020 01.
Article in English | MEDLINE | ID: mdl-31562665

ABSTRACT

The heterogeneous manifestations of MYH9-related disorder (MYH9-RD), characterized by macrothrombocytopenia, Döhle-like inclusion bodies in leukocytes, bleeding of variable severity with, in some cases, ear, eye, kidney, and liver involvement, make the diagnosis for these patients still challenging in clinical practice. We collected phenotypic data and analyzed the genetic variants in more than 3,000 patients with a bleeding or platelet disorder. Patients were enrolled in the BRIDGE-BPD and ThromboGenomics Projects and their samples processed by high throughput sequencing (HTS). We identified 50 patients with a rare variant in MYH9. All patients had macrothrombocytes and all except two had thrombocytopenia. Some degree of bleeding diathesis was reported in 41 of the 50 patients. Eleven patients presented hearing impairment, three renal failure and two elevated liver enzymes. Among the 28 rare variants identified in MYH9, 12 were novel. HTS was instrumental in diagnosing 23 patients (46%). Our results confirm the clinical heterogeneity of MYH9-RD and show that, in the presence of an unclassified platelet disorder with macrothrombocytes, MYH9-RD should always be considered. A HTS-based strategy is a reliable method to reach a conclusive diagnosis of MYH9-RD in clinical practice.


Subject(s)
Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , High-Throughput Nucleotide Sequencing , Myosin Heavy Chains/genetics , Adolescent , Adult , Aged , Alleles , Child , Child, Preschool , Chromosome Mapping , Evolution, Molecular , Female , Fluorescent Antibody Technique , Gene Expression , Genetic Association Studies/methods , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Infant , Male , Middle Aged , Mutation , Myosin Heavy Chains/metabolism , Phenotype , Young Adult
15.
Blood ; 134(23): 2070-2081, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31217188

ABSTRACT

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Subject(s)
Blood Platelets , Genetic Diseases, Inborn , Germ-Line Mutation , Ikaros Transcription Factor , Mutation, Missense , Thrombocytopenia , Thrombopoiesis/genetics , Blood Platelets/metabolism , Blood Platelets/ultrastructure , Chromatin/genetics , Chromatin/metabolism , Chromatin/ultrastructure , Cytoplasmic Granules/genetics , Cytoplasmic Granules/metabolism , Cytoplasmic Granules/ultrastructure , Female , Gene Expression Regulation , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , HEK293 Cells , Humans , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Male , Thrombocytopenia/genetics , Thrombocytopenia/metabolism , Thrombocytopenia/pathology
16.
Blood ; 134(23): 2082-2091, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31064749

ABSTRACT

A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.


Subject(s)
Blood Platelet Disorders , Hemorrhage , High-Throughput Nucleotide Sequencing , Thrombosis , Blood Platelet Disorders/diagnosis , Blood Platelet Disorders/genetics , Female , Gene Dosage , Hemorrhage/diagnosis , Hemorrhage/genetics , Hemostasis/genetics , Humans , Male , Thrombosis/diagnosis , Thrombosis/genetics
17.
Science ; 364(6442)2019 05 24.
Article in English | MEDLINE | ID: mdl-31123110

ABSTRACT

Approximately 2.4% of the human mitochondrial DNA (mtDNA) genome exhibits common homoplasmic genetic variation. We analyzed 12,975 whole-genome sequences to show that 45.1% of individuals from 1526 mother-offspring pairs harbor a mixed population of mtDNA (heteroplasmy), but the propensity for maternal transmission differs across the mitochondrial genome. Over one generation, we observed selection both for and against variants in specific genomic regions; known variants were more likely to be transmitted than previously unknown variants. However, new heteroplasmies were more likely to match the nuclear genetic ancestry as opposed to the ancestry of the mitochondrial genome on which the mutations occurred, validating our findings in 40,325 individuals. Thus, human mtDNA at the population level is shaped by selective forces within the female germ line under nuclear genetic control, which ensures consistency between the two independent genetic lineages.


Subject(s)
DNA, Mitochondrial/genetics , Genome, Mitochondrial , Maternal Inheritance , Ovum/growth & development , Selection, Genetic , Female , Genetic Variation , Humans
18.
Genome Med ; 10(1): 95, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30526634

ABSTRACT

BACKGROUND: Studies have shown that complex structural variants (cxSVs) contribute to human genomic variation and can cause Mendelian disease. We aimed to identify cxSVs relevant to Mendelian disease using short-read whole-genome sequencing (WGS), resolve the precise variant configuration and investigate possible mechanisms of cxSV formation. METHODS: We performed short-read WGS and analysis of breakpoint junctions to identify cxSVs in a cohort of 1324 undiagnosed rare disease patients. Long-read WGS and gene expression analysis were used to resolve one case. RESULTS: We identified three pathogenic cxSVs: a de novo duplication-inversion-inversion-deletion affecting ARID1B, a de novo deletion-inversion-duplication affecting HNRNPU and a homozygous deletion-inversion-deletion affecting CEP78. Additionally, a de novo duplication-inversion-duplication overlapping CDKL5 was resolved by long-read WGS demonstrating the presence of both a disrupted and an intact copy of CDKL5 on the same allele, and gene expression analysis showed both parental alleles of CDKL5 were expressed. Breakpoint analysis in all the cxSVs revealed both microhomology and longer repetitive elements. CONCLUSIONS: Our results corroborate that cxSVs cause Mendelian disease, and we recommend their consideration during clinical investigations. We show that resolution of breakpoints can be critical to interpret pathogenicity and present evidence of replication-based mechanisms in cxSV formation.


Subject(s)
Genome, Human , Genomic Structural Variation , Cell Cycle Proteins/genetics , DNA-Binding Proteins/genetics , Female , Genetic Predisposition to Disease , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Protein Serine-Threonine Kinases/genetics , Sequence Analysis, DNA , Transcription Factors/genetics
19.
J Allergy Clin Immunol ; 142(2): 630-646, 2018 08.
Article in English | MEDLINE | ID: mdl-29391254

ABSTRACT

BACKGROUND: Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome. OBJECTIVE: We studied 3 patients from 2 unrelated kindreds harboring compound heterozygous or homozygous stem II variants in RNU4ATAC to gain insight into the mechanisms behind this disorder. METHODS: We systematically profiled the immunologic and hematologic compartments of the 3 patients with Roifman syndrome and performed RNA sequencing to unravel important splicing defects in both cell lineages. RESULTS: The patients exhibited a dramatic reduction in B-cell numbers, with differentiation halted at the transitional B-cell stage. Despite abundant B-cell activating factor availability, development past this B-cell activating factor-dependent stage was crippled, with disturbed minor splicing of the critical mitogen-activated protein kinase 1 signaling component. In the hematologic compartment patients with Roifman syndrome demonstrated defects in megakaryocyte differentiation, with inadequate generation of proplatelets. Platelets from patients with Roifman syndrome were rounder, with increased tubulin and actin levels, and contained increased α-granule and dense granule markers. Significant minor intron retention in 354 megakaryocyte genes was observed, including DIAPH1 and HPS1, genes known to regulate platelet and dense granule formation, respectively. CONCLUSION: Together, our results provide novel molecular and cellular data toward understanding the immunologic and hematologic features of Roifman syndrome.


Subject(s)
B-Lymphocytes/physiology , Blood Platelets/physiology , Cardiomyopathies/genetics , Immunologic Deficiency Syndromes/genetics , Megakaryocytes/physiology , Mental Retardation, X-Linked/genetics , Mitogen-Activated Protein Kinase 1/genetics , Osteochondrodysplasias/genetics , Precursor Cells, B-Lymphoid/physiology , RNA, Small Nuclear/genetics , Retinal Diseases/genetics , Adolescent , Cell Differentiation , Cell Lineage , Cell Proliferation , Cells, Cultured , Child , Child, Preschool , Humans , Infant , Mitogen-Activated Protein Kinase 1/metabolism , Pedigree , Primary Immunodeficiency Diseases , Protein Splicing/genetics , Signal Transduction/genetics , Exome Sequencing
20.
Nat Commun ; 8: 16058, 2017 07 13.
Article in English | MEDLINE | ID: mdl-28703137

ABSTRACT

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.


Subject(s)
Blood Platelets/physiology , Enhancer Elements, Genetic , Erythroblasts/chemistry , Genetic Variation , Megakaryocytes/chemistry , Chromatin , Humans , Promoter Regions, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...