Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 125(32): 9197-9212, 2021 08 19.
Article in English | MEDLINE | ID: mdl-34375109

ABSTRACT

Light fullerenes, C60 and C70, have significant potential in biomedical applications due to their ability to absorb reactive oxygen species, inhibit the development of tumors, inactivate viruses and bacteria, and as the basis for developing systems for targeted drug delivery. However, the hydrophobicity of individual fullerenes complicates their practical use; therefore, creating water-soluble derivatives of fullerenes is increasingly important. Currently, the most studied soluble adducts of fullerenes are polyhydroxy fullerenes or fullerenols. Unfortunately, investigations of fullerenol biocompatibility are fragmental. They often lack reproducibility both in the synthesis of the compounds and their biological action. We here investigate the biocompatibility of a well-defined fullerenol C60(OH)24 obtained using methods that minimize the content of impurities and quantitatively characterize the product's composition. We carry out comprehensive biochemical and biophysical investigations of C60(OH)24 that include photodynamic properties, cyto- and genotoxicity, hemocompatibility (spontaneous and photo-induced hemolysis, platelet aggregation), and the thermodynamic characteristics of C60(OH)24 binding to human serum albumin and DNA. The performed studies show good biocompatibility of fullerenol C60(OH)24, which makes it a promising object for potential use in biomedicine.


Subject(s)
Fullerenes , Computer Simulation , Fullerenes/pharmacology , Humans , Reproducibility of Results , Water
2.
Membranes (Basel) ; 10(10)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998284

ABSTRACT

Surface modification of polysulfone ultrafiltration membranes was performed via addition of an anionic polymer flocculant based on acrylamide and sodium acrylate (PASA) to the coagulation bath upon membrane preparation by non-solvent induced phase separation (NIPS). The effect of PASA concentration in the coagulant at different coagulation bath temperatures on membrane formation time, membrane structure, surface roughness, hydrophilic-hydrophobic balance of the skin layer, surface charge, as well as separation and antifouling performance was studied. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) spectroscopy, contact angle and zeta potential measurements were utilized for membrane characterization. Membrane barrier and antifouling properties were evaluated in ultrafiltration of model solutions containing human serum albumin and humic acids as well as with real surface water. PASA addition was found to affect the kinetics of phase separation leading to delayed demixing mechanism of phase separation due to the substantial increase of coagulant viscosity, which is proved by a large increase of membrane formation time. Denser and thicker skin layer is formed and formation of macrovoids in membrane matrix is suppressed. FTIR analysis confirms the immobilization of PASA macromolecules into the membrane skin layer, which yields improvement of hydrophilicity and change of zeta potential. Modified membrane demonstrated better separation and antifouling performance in the ultrafiltration of humic acid solution and surface water compared to the reference membrane.

3.
Polymers (Basel) ; 12(8)2020 Jul 25.
Article in English | MEDLINE | ID: mdl-32722466

ABSTRACT

In this paper, we perform computer simulation of two lysine-based dendrimers with Lys-2Lys and Lys-2Gly repeating units. These dendrimers were recently studied experimentally by NMR (Sci. Reports, 2018, 8, 8916) and tested as carriers for gene delivery (Bioorg. Chem., 2020, 95, 103504). Simulation was performed by molecular dynamics method in a wide range of temperatures. We have shown that the Lys-2Lys dendrimer has a larger size but smaller fluctuations as well as lower internal density in comparison with the Lys-2Gly dendrimer. The Lys-2Lys dendrimer has larger charge but counterions form more ion pairs with its NH 3 + groups and reduce the bare charge and zeta potential of the first dendrimer more strongly. It was demonstrated that these differences between dendrimers are due to the lower flexibility and the larger charge (+2) of each 2Lys spacers in comparison with 2Gly ones. The terminal CH 2 groups in both dendrimers move faster than the inner CH 2 groups. The calculated temperature dependencies of the spin-lattice relaxation times of these groups for both dendrimers are in a good agreement with the experimental results obtained by NMR.

4.
Polymers (Basel) ; 12(5)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365754

ABSTRACT

A novel method for one-step preparation of antifouling ultrafiltration membranes via a non-solvent induced phase separation (NIPS) technique is proposed. It involves using aqueous 0.05-0.3 wt.% solutions of cationic polyelectrolyte based on a copolymer of acrylamide and 2-acryloxyethyltrimethylammonium chloride (Praestol 859) as a coagulant in NIPS. A systematic study of the effect of the cationic polyelectrolyte addition to the coagulant on the structure, performance and antifouling stability of polysulfone membranes was carried out. The methods for membrane characterization involved scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), contact angle and zeta-potential measurements and evaluation of the permeability, rejection and antifouling performance in human serum albumin solution and surface water ultrafiltration. It was revealed that in the presence of cationic polyelectrolyte in the coagulation bath, its concentration has a major influence on the rate of "solvent-non-solvent" exchange and thus also on the rate of phase separation which significantly affects membrane structure. The immobilization of cationic polyelectrolyte macromolecules into the selective layer was confirmed by FTIR spectroscopy. It was revealed that polyelectrolyte macromolecules predominately immobilize on the surface of the selective layer and not on the bottom layer. Membrane modification was found to improve the hydrophilicity of the selective layer, to increase surface roughness and to change zeta-potential which yields the substantial improvement of membrane antifouling stability toward natural organic matter and human serum albumin.

5.
Membranes (Basel) ; 9(3)2019 Mar 07.
Article in English | MEDLINE | ID: mdl-30866529

ABSTRACT

Pervaporation has been applied for tetrahydrofuran (THF) dehydration with novel composite membranes advanced by a thin selective layer composed of chitosan (CS) modified by copolymerization with vinyl monomers, acrylonitrile (AN) and styrene, in order to improve the chemical and mechanical stability of CS-based membranes. Composite membranes were developed by depositing a thin selective layer composed of CS copolymers onto a commercially-available porous support based on aromatic polysulfonamide (UPM-20®). The topography and morphology of the obtained materials were studied by atomic force microscopy (AFM), scanning electron microscopy (SEM) and X-ray diffraction analysis (XRD). Thermal properties and stability were determined by coupled evolved gas analysis (EGA-MS). Transport properties were estimated in pervaporation dehydration of THF. The effect of operating parameters for the pervaporation dehydration of THF such as feed compositions and temperatures (295, 308 and 323 K) was evaluated. It was shown that CS modification with different vinyl monomers led to a difference in physical and transport properties. The composite membrane with the thin selective layer based on CS-PAN copolymer demonstrated optimal transport properties and exhibited the highest water content in the permeate with a reasonably high permeation flux.

6.
Environ Sci Pollut Res Int ; 25(21): 20354-20362, 2018 Jul.
Article in English | MEDLINE | ID: mdl-28456916

ABSTRACT

This study focuses first on the preparation of mixed matrix supported membranes of polyvinyl alcohol (PVA) and low-hydroxylated fullerenol C60(OH)12 used to create water selective membranes and then on their pervaporation properties for the separation of water-THF mixtures. These novel supported PVA membranes containing nano-carbon particles were prepared to reach high membrane performance for further integration in a dehydration process, such as distillation coupled to pervaporation. The separation of water-THF mixtures was performed with the supported membranes over a wide range of water concentrations in the feed mixture, i.e., from the azeotrope range up to 30 wt%, to evaluate the performance and stability of the thin active layer. SEM was used to visualize the internal morphology of the membrane. The influence of temperature on the transport properties was also investigated. All the membranes were highly water selective and stable up to 30 wt% water in the feed. The best compromise of transport properties was obtained for the C60(OH)12(5%)-PVA supported composite membrane: a permeate enrichment of 99.3 ± 0.3 wt% water and a flux of 0.25 ± 0.02 kg/(m2 h) for the separation of a mixture containing 5.7 wt% water and 94.3 wt% tetrahydrofuran (THF) at 30 °C. Considering its water stability, this supported membrane with a dense layer thinner than 2 µm appears promising for use in hybrid industrial processes to upgrade solvents with a smaller environmental footprint than conventional methods.


Subject(s)
Distillation , Environment , Fullerenes , Furans , Membranes, Artificial , Polyvinyl Alcohol , Water , Recycling/methods , Solvents , Temperature
7.
Sci Rep ; 7(1): 13710, 2017 10 20.
Article in English | MEDLINE | ID: mdl-29057955

ABSTRACT

Melts of polybutylcarbosilane (PBC) dendrimers from third (G3) up to sixth (G6) generations are investigated by 1H NMR spectroscopy in a wide temperature range up to 493 K. At room temperature, NMR spectra of G3-G5 dendrimers exhibit resolved, solution-like spectra ("liquid" phase). In contrast, the spectrum of the G6 dendrimer is characterized by a single unresolved broad line at whole temperature range, which supports the presence of an anomalous phase state of G6 at temperatures higher than glass transition temperature. For the first time, an unexpected transition of G5 dendrimer from a molecular liquid state to an anomalous state/phase upon temperature increase has been detected using NMR data. Specifically, an additional wide background line appears in the G5 spectrum above 473 K, and this line corresponds to a G5 state characterized by restricted molecular mobility, i.e., a state similar to the "anomalous" phase of G6 melt. The fraction of the G5 dendrimers in "anomalous" phase at 493 K is approximately 40%. Analysis of the spectral shapes suggests that changes in the G5 dendrimers are reversible with temperature.

8.
Sci Rep ; 6: 24270, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27052599

ABSTRACT

We have studied copolymer dendrimer structure: carbosilane dendrimers with terminal phenylbenzoate mesogenic groups attached by poly(ethylene) glycol (PEG) spacers. In this system PEG spacers are additional tuning to usual copolymer structure: dendrimer with terminal mesogenic groups. The dendrimer macromolecules were investigated in a dilute chloroform solution by (1)H NMR methods (spectra and relaxations). It was found that the PEG layer in G = 5 generations dendrimer is "frozen" at high temperatures (above 260 K), but it unexpectedly becomes "unfrozen" at temperatures below 250 K (i.e., melting when cooling). The transition between these two states occurs within a small temperature range (~10 K). Such a behavior is not observed for smaller dendrimer generations (G = 1 and 3). This effect is likely related to the low critical solution temperature (LCST) of PEG and is caused by dendrimer conformations, in which the PEG group concentration in the layer increases with growing G. We suppose that the unusual behavior of PEG fragments in dendrimers will be interesting for practical applications such as nanocontainers or nanoreactors.

SELECTION OF CITATIONS
SEARCH DETAIL
...